

Bilkent University

Department Of Computer Engineering

Senior Design Project

Project short-name: AugCards

Low Level Design Report

Yusuf Avcı, Burak Mutlu, Çerağ Oğuztüzün, Yiğit Görgülü, Bora Kurucu

Supervisor: Prof. Dr. Uğur Güdükbay

Jury Members: TBA

Innovation Expert: Prof. Dr. Veysi İşler

Low Level Design Report

February 08, 2021

This report is submitted to the Department of Computer Engineering of Bilkent

University in partial fulfillment of the requirements of the Senior Design Project

course CS491/2.

Table of Contents

1 Introduction 2

1.1 Object Design Trade-offs 3

1.1.1 User Friendliness vs Functionality 3

1.1.2 Compatibility vs Extensibility 3

1.1.3 Quality vs File Size 3

1.1.4 Robustness vs Cost 4

1.2 Interface Documentation Guidelines 4

1.3 Engineering Standards 5

1.4 Definitions, Acronyms, and Abbreviations 5

2 Packages 5

2.1 Desktop Subsystem 6

2.1.1 View Component 7

2.1.2 Model Component 7

2.1.3 Controller Component 8

2.2 Mobile Subsystem 8

2.2.1 View Component 9

2.2.2 Model Component 10

2.2.3 Controller Component 11

2.2.4 Game Component 11

2.2.5 Local Network Component 12

3 Class Interfaces 13

3.1 Desktop Subsystem 13

3.1.1 Model 13

3.1.1.1 Instancing 13

3.1.1.2 Event 16

3.1.2 View 19

3.1.3 Controller 22

3.2 Mobile Subsystem 23

3.2.1 View 23

3.2.2 Model 25

3.2.3 Controller 27

3.2.4 Game 28

3.2.5 Local Network 29

4 Glossary 31

5 References 34

1

Low Level Design Report

Project short-name: AugCards

1 Introduction

Mobile games are becoming more popular day by day ​[1]​. With mobile gaming, a

new era in the gaming sector has emerged. People started to lose their habit and

passion of playing games with physical equipment, such as board games and

card games. The emergence of mobile gaming, due to its appealing graphics,

ability to play online, and the sky-high imagination of the mobile game

developers, lead people to quit playing card games physically. Additionally, card

games have limited assets, rigid visuals, and static rules.

The main philosophy of AugCards is reuniting the tradition and old-school fun of

playing card games with your friends sitting around the table, the dynamism of

mobile games. AugCard gives users the freedom to create their own cards with

their own assets, introduce their own animations, and specify their own game

rules.

Imagine you and your friends sitting around a table and want to have a good

time. AugCard helps to limit social isolation caused by individual gaming, and

bring the people together to create a game. You and your friends would first

open the AugCards Desktop application and create the game cards, the event

triggers, game animations, rules. Even the complex rules can simply be

introduced with the help of user-friendly design which makes use of flowcharts

and such structures. After the game is complete, you and your friends can open

the complementary AugCards mobile application and everyone can tune in to

play the game you just created, a network is established among the table and

multiplayer mode is enabled. The cards and the AR versions of the assets on the

cards accompanied by animations are seen on the table by everyone looking

through the cam of AugCards. If you are proud of the game you have created,

you can share it on the AugCards platform for other users to play, and play a

game made by another user.

In this report, we will provide a low level design of the system. First, the

trade-offs of the system and the engineering standards will be discussed. Then,

the packages and interfaces of AugCards software of the software architecture

2

https://paperpile.com/c/QHis7I/TXCtK

will be described under headers: Mobile and Desktop subsystems. Additionally,

class diagrams will be presented in this report.

1.1 Object Design Trade-offs

1.1.1 User Friendliness vs Functionality

One of our focuses is a good user experience. We make the game simple, clear

and understandable. Thus, the game will not include complex functionality or

too many options. For instance, we don’t include complex card development

options so that the user will not make an effort to learn how to play the game

with those, rather than that, the user can enjoy the simple game, and

everything will be clear.

1.1.2 Compatibility vs Extensibility

In the regard of compatibility, the mobile system has a crucial constraint on the

library used for AR support. Many AR libraries support Android or iOS or both,

but many of them support a range of Android or iOS devices. That is, device

compatibility is an important consideration in choosing the right AR library. We

will use Vuforia to provide AR support. Vuforia has an Android SDK to develop

AR applications on a wide range of Android devices which are our target in the

project. On the desktop side, we will use Java to develop the application, that is,

it will be a cross-platform game design application.

Extensibility is one of the fundamental requirements for both game applications

and design tools. Initially, we focused on providing the maximum customizability

in both visual aspects and game concept. However, there should be user-friendly

interactions in the games from the player perspective. That is, we should follow

an extensible development progress to insert such features in the proceeding

progress. We should provide an integration of such interactions into the games

on the desktop side and reflect them to the games on the mobile side.

1.1.3 Quality vs File Size

Higher quality graphics data require high storage. Our cloud system needs to

store game data which includes graphics data such as textures and animations.

3

This storage requirement is a constraint for us because of cloud storage’s cost.

Also, it will cause longer download times for game players and longer upload

times for game creators. Thus, we have to limit asset size to be able to maintain

the service. We want to allow a reasonable game size (around 50MB) that will

allow good graphic and animation quality. We may also provide paid options to

be able to use big sized assets.

1.1.4 Robustness vs Cost

AugCards’ aim is to provide a service such that Its’ outputs are reliable and

provides the user the AugCards functionalities to the fullest extent. In order to

achieve this, better services will be used regarding cloud maintenance. We will

use Firebase for cloud maintenance as It is more preferred for services which are

not large [4]. Using Firebase services will cost money, so AugCards’ robustness

is achieved with more cost of money, which is a design goal to be automated to

the largest extent.

1.2 Interface Documentation Guidelines

All of our classes are named according to PascalCase. Attribute and method

names follow the camelCase convention. In the interface documentation, we use

a table to describe our class interfaces, which includes the name, description,

class attributes, class methods and the descriptions of these methods. A sample

table can be found below.

4

class SampleClass

This is a sample class...

Attributes

private String sampleString

private int sampleInt

Methods

public String getString()

public void setNo(int no)

returns sample string

sets the no

1.3 Engineering Standards

For the descriptions of the class interfaces, as well as the diagrams, scenarios

and the use cases, followed by the subsystem compositions and hardware

depictions, our reports utilizes the guidelines of UML as this is widely used for

the purpose of generating diagrams [10]. For the citations, we used IEEE

standards as they are widely used in reports within the engineering domain.

1.4 Definitions, Acronyms, and Abbreviations

AR:​ ​AR (Augmented Reality) is an interactive experience of a real-world

environment where the objects that reside in the real world are enhanced by

computer-generated perceptual information. Accordance between real-world

environment and computer generated information is ensured via sensors (or

camera) and algorithms.

Action:​ Actions are building blocks of events. 15 different actions with different

parameters are available to the game creators.

Event:​ Game rules are implemented by using events. Events consist of actions.

Custom events are triggered by the main event.

Card:​ Cards are customizable and interactive game objects.

Deck:​ Card Collections.

Attribute:​ Properties of game objects.

Trigger:​ Event handling mechanisms which consists of some script lines. In this

way, it determines the event flow of game logic.

Script:​ Instructive lines to specify updates on the game objects during event

flow.

Expression: ​The struct to refer game object reference or their operational

relations.

2 Packages

AugCards’ subsystem decomposition consists of a Mobile subsystem and a

Desktop subsystem regarding the platforms which will be used in the software

by the users. A subsystem diagram and composition carries great importance for

our project, as it displays the interactions and information exchange between the

systems, and how It composes a system of harmonically working subsystems.

The information exchange that is happening between desktop and mobile

5

systems includes the compilation of the game created on the desktop, in the

mobile system. For example, the clarification of this process is of great

importance regarding the implementation of both of the systems such that less

error is faced by the developers. Regarding these issues, in our report, we gave

great consideration into subsystem composition and software architecture

designs.

2.1 Desktop Subsystem

Figure 3: Desktop subsystem’s components

The desktop subsystem is responsible for handling the Model and View

components of the desktop application of AugCards which uses a Controller

component for receiving and providing information from the Mobile subsystem of

AugCards.

View: ​The View component is responsible for the UI operations of the Desktop

application. It is related to the Controller via input entries.

Model: ​The Model component implements the logic of the Desktop application

which shares data between the View component and is related to Controller with

its register input.

Controller: ​The Controller subsystem is responsible for handling the information

exchange between the Mobile and Desktop applications.

6

2.1.1 View Component

The View component manages the UI of our desktop application, communicating

with the Model component through the Controller component.

Figure 4: View component and its classes

MainWindow:​ The main window of the application. It contains other components

and lets the user see what they are doing.

InstanceDesign:​ Where the user designs instances.

EventDesign:​ Where the user designs events.

LayoutDesign:​ Where the user designs layouts of their game.

2.1.2 Model Component

Model component is supposed to store the information for designed games, that

is, defined objects and game rules.

Figure 5: Model component and its classes

7

Project: ​A class to represent a particular game project. It stores all custom

elements like ​Instances​ and ​Events.

Instance: ​A class to represent a specific game object like card, player, etc. It can

store any custom ​Attributes​ defined.

Events: ​A class to represent a specific game event like game-init, card-attack,

etc. It should store all its own ​Triggers​ defined.

Attributes: ​A class to represent a property of defined ​Instance. ​It should store

its reference name, type and initial value.

Triggers: ​A class to represent a handling mechanism of an ​Event. ​It should store

a sequence of ​Scripts ​to define the handling mechanism.

Scripts: ​A class to represent an effective change on an ​Attribute. ​It should store

its effect type, focus attribute and modifiers.

2.1.3 Controller Component

Controller component basically manages the application flow according with

incoming inputs from the View component. Application flow contains

authentication and exporting game data.

Figure 6: Controller component and its classes

AuthenticationManager: ​A manager class to handle authentication requests for

the desktop system. It should communicate with ​Cloud Subsystem to check

users’ access permission.

ModelManager​: A manager class to handle manipulations on game models

according to the inputs from View Component. It should apply manipulations to

Data Component and generate output files for game models.

2.2 Mobile Subsystem

The details of the mobile subsystems is provided below.

8

Figure 7: Mobile subsystem’s components

2.2.1 View Component

Figure 8: View component and its classes

The View component is composed of the following parts:

MainWindow:​ ​A class which provides the view of the main window of AugCards.

HomeView:​ ​A class that is responsible for the display of the home page.

GameView: ​A class that represents the view of the game to be played in

AugCards.

LibraryView: ​A class which provides the library view of AugCards which displays

a number of games.

GameLayoutView: ​A class to represent the layout of where each game instance

will be placed for a game.

9

PlatformView: ​A class that is to display the platform where users can search for

games.

2.2.2 Model Component

The Model component keeps information about the app itself and the game is

managed by another component. This component keeps user information such

as authentication information and the user’s game library, as well as the game

lobby.

Figure 9: Model component and its classes

Augcards:​ The mainframe of the mobile game.

GameLobby:​ Information about the running game lobby is kept here.

User:​ Information about the user themselves will be managed by this class.

Platform:​ The shared games and their community pages will be kept here.

GameLibrary:​ The user’s game library information will be kept here.

10

2.2.3 Controller Component

Controller component basically manages the application flow according with

incoming inputs from the View component. Such application flow may contain

authentication or creating/joining a lobby or launching a game session.

Figure 10: Controller component and its classes

AuthenticationManager: ​A manager class to handle authentication requests. It

should communicate with ​Cloud Subsystem​ to check users’ access permission.

LobbyManager: ​A manager class to handle lobby joining/creation requests. It

should communicate with ​Local Network Component to establish connection

with a lobby.

GameSessionManager: ​A manager class to handle game launch requests. It

should communicate with ​Game Component ​to run a game execution process.

2.2.4 Game Component

Game component is responsible for executing the actual game. It loads a

downloaded game model and it’s assets and parses the data to create a game

session.

Figure 11: Game component and its classes

GameEngine:​ ​Executes the game using the game model and game assets.

ModelLoader:​ ​Loads the game model data for the game.

11

AssetLoader:​ ​Loads the game assets.

2.2.5 Local Network Component

Local Network component manages the hosting for game lobbies/sessions on a

local network. Since it will use P2P structure, there will be both sending and

receiving tasks to/from a connected host.

Figure 12: Local network component and its classes

Lobby:​ A class to represent lobby information of a host. It should contain users

connected to the host.

Session:​ A class to represent session information of a host. It should update the

state of content according with changes on the host.

Network Engine:​ A manager class to handle connection to the host. It executes

sending and receiving tasks through the connection.

12

3 Class Interfaces

3.1 Desktop Subsystem

3.1.1 Model

3.1.1.1 Instancing

13

class Project

A class to represent a custom game project.

Attributes

public String name

Methods

class InstanceType

A class to represent a type to define game objects.

Attributes

public String ID

public InstanceType genericType

public InstanceType superiorType

Methods

public boolean equals(InstanceType

other)

public String toString()

returns whether two types are

equivalent

returns string representation of

the type

14

class Instance

A class to represent a specific game object like card, player, etc.

Attributes

public InstanceType type

private Instance superiorInstance

private List<Attribute> attributes

private List<Event> events

private List<EventTrigger> triggers

Methods

public Instance getSuperiorInstance()

public boolean insertAttribute (Attribute

attribute)

public boolean removeAttribute

(Attribute attribute)

public boolean setAttributeInit (Attribute

attribute, Instance init)

public List<Attribute> getSelfAttributes()

public List<Attribute>

getInheritedAttributes()

public Instance copy()

public Instance instantiate()

public boolean checkEquivelant(Instance

other)

returns superior instance

inserts given attribute

removes specified attribute

sets the init value of specified

attribute with given parameters

returns a list for the attributes self

defined

returns a list for the attributes

inherited

copies and returns the instance

instantiates an Instance derived

from the instance

checks whether two instances are

equivalent

15

class Attribute

A class to represent a property of defined ​Instance. ​It stores its reference

name, type and initial value.

Attributes

public String ID

public Pair<DataType, InstanceType> type

private Pair<InitType, Instance> init

Methods

public boolean setInit(InitType, Instance init)

public Pair<InitType, Instance>getInit()

public Attribute copy()

sets the init value with given

parameters

returns the init value

copies and returns the attribute

enum DataType

An enum to define data types applicable on​ Attributes

Constants

NUMERIC

STRING

BOOLEAN

CUSTOM

LIST

enum InitType

An enum to define initialization types applicable on​ Attributes

Constants

UNINITIALIZED

DEFAULT

VALUE

3.1.1.2 Event

16

class InitValue

A child class of Instance to represent a primitive type of initialization.

Attributes

public String value

Methods

public InitValue copy() returns a copy of the init value

enum FixComp

An enum to represent constant components in games

Constants

GAME

PLAYER

CARD

class Event

A class to represent specific game events like game-init, card-attack, etc. It

stores all its own ​Triggers​ defined.

Attributes

public String ID

public EventArgs args

public Instance invoker

private Map<Instance, Trigger> triggers

Methods

public boolean insertTrigger(Instance

instance, Trigger trigger)

public boolean removeTrigger(Instance

instance)

inserts and matches the given

trigger with specified Instance

removes the trigger of

specified Instance

17

class EventArgs

A class to represent arguments properties for Events.

Attributes

private List<Attribute> args

Methods

public boolean insertArgument(Attribute attr

bute)

public boolean removeAttribute(Attribute attr

bute)

inserts the given argument

attribute

removes the specified

argument attribute

class EventTrigger

A class to represent trigger mechanisms for Events.

Attributes

public Event event

private List<Script> scripts

Methods

public void insertScript(Script script)

public boolean removeScript(Script script)

inserts the given script

removes the specified script

class Script

A class to represent the general structure of ​Event​ scripts.

Attributes

public Expression attributeExpression

public EffectType effect

public Expression modifierExpression

Methods

18

class Expression

An abstract class to represent in-script variables.

Attributes

Methods

enum EffectType

An enum to represent in-script effect types.

Constants

SET

ADD

SUBTRACT

MULTIPLY

DIVIDE

INSERT

REMOVE

EXCHANGE

TRUNCATE

RAISE

CHECK

ITERATE

INVOKE

3.1.2 View

!!!1!!!!!!!!!BULLSHITTING MOMENTUM!!!!!!!!!!!!!!!11!

19

class EventCreationScene

A class which provides the view for event creation for created games. UI

elements to create/edit/delete are defined here.

Attributes

private TreeView<String> hierarchyView

private VBox eventList

private StackPane attributes

private Pane UpperPane

private Pane bottomPane

Methods

public void initialize()

ItemLabelView setTree()

Button createEventView(

GameInstance instance)

private void

setTypeAttributeView(List<Attribute>

attributes, VBox attribView, boolean

inherited)

private void

setEventAttributeView(List<Attribute>

attributes, VBox attribView)

Sets the listeners and variables.

Creates the card navigation hierarchy.

Creates a event view.

Used to create the view of an attribute

of a type.

Used to create the view of an attribute

of a event.

20

class CardCreationScene

A class which provides the view for card creation for created games. UI

elements to create/edit/delete are defined here.

Attributes

private TreeView<String> hierarchyView

private VBox cardList

private StackPane attributes

private Pane UpperPane

private Pane bottomPane

Methods

public void initialize()

ItemLabelView setTree()

Button createCardView(

GameInstance instance)

private void

setTypeAttributeView(List<Attribute>

attributes, VBox attribView, boolean

inherited)

private void

setCardAttributeView(List<Attribute>

attributes, VBox attribView)

Sets the listeners and variables.

Creates the card navigation hierarchy.

Creates a card view.

Used to create the view of an attribute

of a type.

Used to create the view of an attribute

of a card.

21

class LayoutSettingScene

A class which provides the view for setting the game layout. Game creators

set how the table areas will be used/divided in the game. They also set the

game button/control layout.

Attributes

private TreeView<String> hierarchyView

private VBox toolBox

private StackPane gameTableView

private StackPane phoneLayoutView

private Pane upperPane

private Pane bottomPane

Methods

public void initialize()

void setToolBox()

void setGameTableView()

void setPhoneLayoutView()

Sets the listeners and variables.

Creates a toolbox view with different

tools to manipulate the game layout.

Creates game table view.

Creates phone layout view.

class MenuScene

A class which provides the view for the main menu. UI elements to go to card

creation,settings,etc. are here.

Attributes

private VBox menuBox

private UpperPane upper

private StackPane

Methods

private void initialize()

private void createContent()

private void addBackGround()

private void addTitle()

private void addMenu()

private void openInfo()

adds all the components to the screen

adds the background image

adds the title

adds the menu buttons

opens the info section

3.1.3 Controller

22

class UpperPane

A class which provides a quick menubar to quickly switch between important

scenes like homescene,settings,etc.

Attributes

private Rectangle backToMenu

private Rectangle musicButton

private VBox rectangles

Methods

public void initialize() creates the screen

class InstanceManager

A Singleton manager class to handle instance modelling regarding incoming

requests from the ​View ​component.

Attributes

private List<Instance> roots

Methods

public void initialize()

public Instance insertInstance(String id,

Instance superior)

public boolean removeInstance(Instance

instance)

public List<Instance>

retrieveSuperInstances()

public List<Instance>

retrieveSubInstances(Instance instance)

public boolean insertAttribute (Instance

instance, String attributeID)

public boolean removeAttribute

(Instance instance, Attribute attribute)

public boolean setInit(Instance instance,

Attribute attribute, Instance init)

initializes fix components

creates and return new instance

with given parameters

removes the specified instance

returns a list for super instances

returns a list for sub-instances of

specified instance

creates and insert new attribute

with given parameters

removes the specified attribute

set the init value of specified

attribute with given parameters

3.2 Mobile Subsystem

3.2.1 View

!!!1!!!!!!!!!BULLSHITTING MOMENTUM!!!!!!!!!!!!!!!11!

23

class EventManager

A Singleton manager class to handle event modelling regarding incoming

requests from the ​View ​component.

Attributes

private List<Instance> roots

Methods

public void initialize()

public boolean insertEvent(Instance instance,

String eventID)

public boolean removeEvent(Instance

instance, Event event)

public boolean insertEventTrigger(Event

event, Instance instance, EventTrigger

trigger)

public boolean removeEventTrigger(Event

event, EventTrigger trigger)

public void insertScript(EventTrigger trigger,

Script script)

public void removeScript(EventTrigger

trigger, Script script)

initializes fix events

inserts the specified event into

the given instance

removes the specified event

inserts the specified event

trigger into the given event

removes the specified event

trigger

inserts the specified script into

the given trigger

removes the specified script

class MainWindow

A class which provides the view of the main window of AugCards.

Attributes

private XML mainWindowXML

Methods

public void start() displays the main view of AugCards

24

class HomeView

A class that is responsible for the display of the home page.

Attributes

private XML homeViewXML

Methods

public void startHomeView() displays the home view of AugCards

class LibraryView

A class which provides the library view of AugCards which displays a number

of games.

Attributes

private XML libraryViewXML

Methods

public void startLibraryView() displays the library view of AugCards

class PlatformView

A class that is to display the platform where users can search for games.

Attributes

private XML platformViewXML

Methods

public void startPlatformView() displays the platform view of

AugCards

3.2.2 Model

25

class GameView

A class that represents the view of the game to be played in AugCards.

Attributes

private XML gameViewXML

Methods

public void startGameView() displays the game view of AugCards

class GameLayoutView

A class to represent the layout of where each game instance will be placed for

a game.

Attributes

private XML gameLayoutViewXML

Methods

public void startGameLayoutView() displays the game layout view of

AugCards

class Augcards

The mainframe of the mobile game.

Attributes

private GameLobby gameLobby

private User user

private Platform platform

Methods

public GameLobby getGameLobby()

public User getUser()

public Platform getPlatform()

returns game lobby

returns user

returns platform

26

class GameLobby

Information about the running game lobby is kept here.

Attributes

private List<String> usersInLobby

private List<String> usersInvited

private String host

private boolean isGameReady

Methods

public List<String> getUsersInLobby()

public List<String> getUsersInvited()

public String getHost()

public Boolean isGameReady()

returns users in Lobby

returns users who are invited

returns host of Lobby

returns if game is ready to be played

class User

Information about the user themselves will be managed by this class.

Attributes

private String username

private GameLibrary gameLibrary

Methods

public String getUsername() returns user’s username

class Platform

The shared games and their community pages will be kept here.

Attributes

private List<String> allGames

private List<String> featuredGames

Methods

public String getGame(String id)

public String getFeaturedGame(String

id)

returns a game with the given ID

sets the no

returns a featured game with the

given ID

3.2.3 Controller

27

class GameLibrary

The user’s game library information will be kept here.

Attributes

private List<String> gameIDs

private List<String> favGameIDs

Methods

public String getGameID(String name)

public List<String> getFavGames()

returns the ID of the game by given

name

returns the user’s favourite games

class AuthenticationManager

A manager class to handle authentication requests. It should communicate

with ​Cloud Subsystem​ to check users’ access permission.

Attributes

private String authenticationToken

Methods

public boolean authenticate(String

token)

returns if user is authenticated or not

3.2.4 Game

28

class LobbyManager

A manager class to handle lobby joining/creation requests. It should

communicate with ​Local Network Component to establish connection with a

lobby.

Attributes

private GameLobby lobby

Methods

private GameLobby createLobby()

private String inviteUser(String id)

private String kickUser(String id)

creates lobby

invites users to lobby

kicks users from lobby

class GameSessionManager

A manager class to handle game launch requests. It should communicate with

Game Component ​to run a game execution process.

Attributes

private Game game

Methods

private boolean startGame() starts the game

class GameEngine

Executes the game using the game model and game assets.

Attributes

private AssetLoader assetLoader

private ModelLoader modelLoader

Methods

public boolean executeGame() executes game

3.2.5 Local Network

29

class ModelLoader

Loads the game model data for the game.

Attributes

private List<Files> jsonFiles

Methods

public List<Files> getJSONFiles returns the JSON files of the game

class AssetLoader

Loads the game assets.

Attributes

private List<Asset> assets

Methods

public List<Asset> getAssets() returns the assets

class NetworkEngine

A manager class to handle connection to the host. It executes sending and

receiving tasks through the connection.

Attributes

private Session session

Methods

public connectToSession(session) establishes connection to session

30

class Lobby

A class to represent lobby information of a host. It should contain users

connected to the host.

Attributes

private GameLobby gamelobby

Methods

public GameLobby getGameLobby() returns game lobby

class Session

A class to represent session information of a host. It should update the state

of content according with changes on the host.

Attributes

public String hostIP

public String hostPort

Methods

public String getHostIP()

public String getHostPort()

returns the host’s IP address

returns the host’s port number

4 Glossary

Game Instance A specific instance in AugCards to

represent the custom game objects like card, player, avatar defined by the

developer.

Game Event A specific event in AugCards to represent the

custom game events like attack, play card or navigate to the next turn, defined

by the developer.

Event Trigger An event trigger represents the trigger

mechanisms for defined events.

Game Rules A set of conditioners for a game specified by

Developers in AugCards to represent the rules of the created game.

Session A session refers to a game session in

which the game is played by the players.

Asset An abstract class to generalize the graphical

elements.

Animation A specific Asset to represent the pre-designed

transform sequence for graphical models within animation data.

Developer A developer of AugCards represents the type of

actor in the system which creates card games.

Player A player of AugCards represents the type of

actor in the system which attends games.

Platform A platform in AugCards represents the common

point where users and developers meet through shared games.

31

Game Library A game library in AugCards represents

the customizable game storage where users can insert new ones and pick

favorites.

Game Lobby A game lobby in AugCards represents created

and in-preparation game sessions in which players can join.

GPU Graphics Processing Unit. GPU is designed for

handling graphics operations, including 2D and 3D calculations to render 3D

graphics ​[5]​.

Git A version control system used for project teams

for reviewing and tracing code changes.

GitHub An online platform which hosts software

development versions for software development teams by using Git.

Trello Trello is a collaboration tool that organizes your

projects into boards ​[6]​.

Augmented Reality Augmented Reality is a technology for producing

an enhanced environment ​[7]​.

Android System The Android operating system is a mobile

operating system developed for mobile platforms.

Discord an American VoIP, instant messaging and

digital distribution platform designed for creating communities ​[8]​.

WhatsApp WhatsApp is a messenger cross-platform instant

messaging application.

Dulst Dulst is an online card game playing software

[9]​.

32

https://paperpile.com/c/QHis7I/5Dvm
https://paperpile.com/c/QHis7I/5oAj
https://paperpile.com/c/QHis7I/kuFw
https://paperpile.com/c/QHis7I/P0WN
https://paperpile.com/c/QHis7I/kmnA

UML Unified Modeling Language, is a standardized

modeling language consisting of an integrated set of diagrams ​[10]​.

Vuforia Vuforia is an engine that supports the use

of AR and computer vision functionalities ​[11]​.

Firebase Firebase is Google's mobile platform that helps

you quickly develop high-quality apps and grow your business [4].

JSON JSON (JavaScript Object Notation) is a

lightweight data-interchange format [12].

33

https://paperpile.com/c/QHis7I/39S2
https://paperpile.com/c/QHis7I/6Fyd

5 References

[1] “Topic: Mobile gaming.” [Online]. Available:

https://www.statista.com/topics/1906/mobile-gaming/​. [Accessed:

09-Oct-2020]

[2] “Dulst.” [Online]. Available: ​https://dulst.com/​. [Accessed: 08-Oct-2020]

[3] “ARCore overview | Google Developers,” ​Google​. [Online]. Available:

https://developers.google.com/ar/discover. [Accessed: 27-Dec-2020].

[4] Google​. [Online]. Available: https://firebase.google.com/. [Accessed:

27-Dec-2020].

[5] “GPU (Graphics Processing Unit) Definition.” [Online]. Available:

https://techterms.com/definition/gpu​. [Accessed: 21-Nov-2020]

[6] Trello, “What is Trello?” [Online]. Available: ​https://help.trello.com​.

[Accessed: 21-Nov-2020]

[7] “augmented reality.” [Online]. Available: ​https://www.dictionary.com​.

[Accessed: 21-Nov-2020]

[8] Contributors to Wikimedia projects, “Discord (software),” 30-Jan-2016.

[Online]. Available: ​https://en.wikipedia.org/wiki/Discord_(software)​.

[Accessed: 21-Nov-2020]

[9] “Dulst.” [Online]. Available: ​https://dulst.com/​. [Accessed: 21-Nov-2020]

[10] ​“What is Unified Modeling Language (UML)?” [Online]. Available:

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/wh

at-is-uml/​. [Accessed: 21-Nov-2020]

[11] ​“Vuforia Developer Portal.” [Online]. Available:

34

http://paperpile.com/b/QHis7I/TXCtK
https://www.statista.com/topics/1906/mobile-gaming/
http://paperpile.com/b/QHis7I/TXCtK
http://paperpile.com/b/QHis7I/TXCtK
http://paperpile.com/b/QHis7I/yqRqR
https://dulst.com/
http://paperpile.com/b/QHis7I/yqRqR
http://paperpile.com/b/QHis7I/5Dvm
https://techterms.com/definition/gpu
http://paperpile.com/b/QHis7I/5Dvm
http://paperpile.com/b/QHis7I/5oAj
https://help.trello.com/
http://paperpile.com/b/QHis7I/5oAj
http://paperpile.com/b/QHis7I/5oAj
http://paperpile.com/b/QHis7I/kuFw
https://www.dictionary.com/
http://paperpile.com/b/QHis7I/kuFw
http://paperpile.com/b/QHis7I/kuFw
http://paperpile.com/b/QHis7I/P0WN
http://paperpile.com/b/QHis7I/P0WN
https://en.wikipedia.org/wiki/Discord_(software)
http://paperpile.com/b/QHis7I/P0WN
http://paperpile.com/b/QHis7I/P0WN
http://paperpile.com/b/QHis7I/kmnA
https://dulst.com/
http://paperpile.com/b/QHis7I/kmnA
http://paperpile.com/b/QHis7I/39S2
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
http://paperpile.com/b/QHis7I/39S2
http://paperpile.com/b/QHis7I/6Fyd

https://developer.vuforia.com/​. [Accessed: 21-Nov-2020]

[12] “Introducing JSON,” ​JSON​. [Online]. Available:

http://www.json.org/json-en.html. [Accessed: 27-Dec-2020].

35

https://developer.vuforia.com/
http://paperpile.com/b/QHis7I/6Fyd

