
Bilkent University
Department Of Computer Engineering

Senior Design Project

Project short-name: AugCards

Final Report

Yusuf Avcı, Burak Mutlu, Çerağ Oğuztüzün, Yiğit Görgülü, Bora Kurucu

Supervisor: Prof. Dr. Uğur Güdükbay
Jury Members: Dr. Ayşegül Dündar
Innovation Expert: Prof. Dr. Veysi İşler

Final Report
April 30, 2021

This report is submitted to the Department of Computer Engineering of Bilkent
University in partial fulfillment of the requirements of the Senior Design Project
course CS491/2.

1

Contents
1. Introduction 5

2. Requirements Details 5

2.1. Functional Requirements 5
2.1.1 User Functionality 6

2.1.1.1 Player Functionality 6
2.1.1.2 Game-Developer Functionality 6

2.1.2 Desktop System Functionality 7
2.1.3 Mobile System Functionality 8

2.1.3.1 Common Graphics/Network Subsystem 8
2.1.4 Cloud System Functionality 9

2.2. Nonfunctional Requirements 9
2.2.1 Usability 9
2.2.2 Reliability 10
2.2.3 Maintainability 10
2.2.4 Accessibility 10
2.2.5 Extendability 10
2.2.6 Portability 11

3. Final Architecture and Design Details 11
3.1 Overview 11
3.2 Desktop System 11
3.3 Mobile System 12
3.4 Cloud System 12

4. Development/Implementation Details 12
4.1. Desktop Application 12

5. Testing Details 16

6. Maintenance Plan and Details 16
6.4. Issue Tracking 17

7. Other Project Elements 17

7.1. Consideration of Various Factors in Engineering Design 17
7.1.1 Public Health 18
7.1.2 Public Safety 18
7.1.3 Public Welfare 18
7.1.4 Global Factors 18
7.1.5 Social Factors 18
7.1.6 Cultural Factors 18
7.1.7 Economic Factors 19

7.2.1 Ethics 19
7.2.2 Professional Responsibilities 19

7.4. Teamwork Details 20
7.4.2. Helping creating a collaborative and inclusive environment
21
7.4.3. Taking lead role and sharing leadership on the team 21

7.5. Meeting objectives 21
7.5.1. Functional Requirements 21

7.5.1.1. User Functionality 22
7.5.1.2. Player Functionality 22
7.5.1.3. Game-Developer Functionality 22
7.5.1.4. Desktop System Functionality 22
7.5.1.5. Mobile System Functionality 23
7.5.1.6. Common Graphics/Network Subsystem 23
7.5.1.7. Cloud System Functionality 23

7.5.2. Nonfunctional Requirements 24
7.5.2.1. Usability 24
7.5.2.2. Reliability 24
7.5.2.3. Maintainability 24
7.5.2.4. Accessibility 24
7.5.2.5. Extendability 24
7.5.2.6. Portability 25

7.6. New Knowledge Acquired and Applied 25

8. Conclusion and Future Work 25

8.1. Conclusion 25
8.2. Future Work 26

9. Glossary 26

10. References 28

User Manual 29

Desktop Component 30
Opening A Project 30

Opening A New Project 31
Loading An Existing Project 31

Card Manager 33
Adding An Attribute 33

Removing Attributes 35
Attribute Types 35
Table 8: Attribute Types 35

3

Adding Card/Deck Attributes 35
Attribute Inheritance 36
Attribute Visibility 36

Type Creation 37
Removing A Type 37

Card Creation 37
Removing A Card 37

Setting Attribute Value 38
Setting Numeric Attribute Value 38
Setting Text Attribute Value 39

Forbidden Inputs. 39
Setting Boolean Attribute Value 39
Setting Deck Attribute Value 39

Player & Game Objects 41
Event Manager 42

Modify Script 43
Case Script 45
Raise Event 46
Wait Script 47

Visual Manager 49

Mobile Component 50
Launch Scene 51
Game Selection Scene 51
Game Hosting Scene 52
Lobby Scene 53
Main Game Scene 53

4

1. Introduction
Mobile games are becoming more popular day by day [1]. With mobile

gaming, a new era in the gaming sector has emerged. People started to lose
their habit and passion of playing games with physical equipment, such as
board games and card games. The emergence of mobile gaming, due to its
appealing graphics, ability to play online, and the sky-high imagination of the
mobile game developers, lead people to quit playing card games physically.
Additionally, card games have limited assets, rigid visuals, and static rules.

AugCards is a multiplayer AR mobile game creation engine. The main
philosophy of AugCards is reuniting the tradition and old-school fun of playing
card games with your friends sitting around the table, the dynamism of mobile
games. AugCards gives users the freedom to create their own cards with their
own assets, and introduce their own animations. Similar applications like Dulst
[2] and Runeterra [3] do not support specifying their own game rules, which is
AugCards’ key functionality.

Imagine you and your friends sitting around a table and want to have a
good time. AugCards helps to limit social isolation caused by individual
gaming, and bring the people together to create a game. You and your friends
would first open the AugCards Desktop application and create the game
cards, the event triggers, game models, rules. Even the complex rules can
simply be introduced with the help of user-friendly design. After the game is
complete, you and your friends can open the complementary AugCards
mobile application and everyone can tune in to play the game you just
created, a network is established among the table and multiplayer mode is
enabled. The cards and the AR versions of the 3d models of the cards are
seen on the table by everyone looking through the cam of AugCards.

In this report, we will provide the final architecture and design of
AugCards. First, development and implementation details will be discussed.
Then, testing details will be described, given attention to the maintenance
plan. Requirements being functional and non-functional will be provided. Also,
other project elements will be provided, such as consideration of various
factors in engineering, ethics, and teamwork details. After, the new knowledge
acquired during this project will be discussed. Then a user manual of
AugCards will be provided. Last but not least, the future work regarding the
project will be stated as a conclusion.

2. Requirements Details

2.1. Functional Requirements
Functional requirements aid in capturing the system behavior in terms

of functions, systems and services. User functionality, Desktop system, Mobile
system and Cloud system requirements will be provided.

5

https://paperpile.com/c/QHis7I/TXCtK

2.1.1 User Functionality
● Users can be either game-developers or players.
● Users can search and look out for shared games on the platform.
● Users can add the games to their library by downloading binaries.
● Users can update the games on their library if creators release a new

patch.
● Users can rate and comment on the games.
● Users can see the statistics of a game about downloads and ratings or

read comments.
● Users should have an account to interact with the platform features.

2.1.1.1 Player Functionality
● Players can play downloaded games.
● Players can create and connect to private hosts for game sessions in

the local network.
● Players should have the required number of

human-players/mobile-devices connected to the host regarding the
player constraints of the game.

● Players should set up the camera of the mobile device regarding that
game content will be rendered on a planar surface.

● Players can send inputs to the game by touching the screen.
● Players can interact with game instances/cards and perform certain

game events.
● Players can see other players’ interaction and ongoing game events

simultaneously.

2.1.1.2 Game-Developer Functionality
The system should:

● Developers do not need programming knowledge.
● Developers can create custom card games.

By using UI options, developers should be able to define:
● required/custom game instances like the player, card, card set, card

types, etc.,
● properties of game instances like player’s health, card’s properties

in-depth (type, initial value, constant).
● class relationships between defined game instances.
● game events and their effects on game instances.
● trigger mechanism of game events.
● trigger mechanism of user-input events.
● rules for the events and the properties of game instances.
● heuristic function with accessible game data to enable AI scription.

6

● custom graphical models/assets for corresponding game instances.
● custom animations for each graphical model.
● bindings of each animation to certain events.
● Developers can upload/update the models for their own created games

on the cloud.
● Developers can see all commits and pull an old version of the game.
● Developers can generate source code and compile the game on the

cloud for Debugging or Release.
● Developers can generate binaries directly on the local machine for

Debugging.
● Developers cannot access the generated source code for the game.
● Developers can download compiled binaries from the cloud.
● Developers can sync binaries of the game on desktop applications into

a mobile application.
● Developers can debug the game with the desktop application over a

virtual plane for AR-enabled graphics.
● Developers can debug the game with the mobile application over AR

applied camera frames.
● Developers can deactivate certain game rules for easier debugging.
● Developers can share their custom game to make it accessible for

users in the cloud platform.
● Developers can update/unshare their shared games.
● Developers can remove the repository of an unshared game from the

cloud.

2.1.2 Desktop System Functionality
The system should:

● ask the developer for login credentials.
● create local/cloud repositories for custom game projects.
● delete all repository files if the developer decides to remove the game.
● restore the last committed version of a custom game from their

cloud/local repository.
● restore a game over design models like game instances, instance

relationships, events-triggers, etc.
● provide a sophisticated and interactive UI for each model design

feature.
● provide a table design tool for game instances and their relationships

such as inserting a new table to define new instance type, inserting a
new line into instance tables to define properties, columns for the detail
of properties like type, initial value, etc.

7

● provide a sequence diagram tool for events-triggers; definition of
triggers contains determining check rules, updates for accessible
properties, and invoking other events.

● provide a model viewer to import and bind graphical models/animations
to game instances and events.

● give warnings about possible development issues like incomplete
event-triggers, infinite-loop danger, etc.

● provide a commit tool to investigate commit details, push/pull commits,
update game models over commits.

● provide a debugging tool to generate binaries on local/cloud, run the
binaries on Android Emulator, or sync the binaries with the mobile
application.

● provide an additional debugging feature to simulate the game with a
desktop version to ensure quick debugging sessions.

● provide a platform interface to edit the community page for the game,
share/unshare the game and interact with other users’ comments.

2.1.3 Mobile System Functionality
The system should:

● asks the user for login credentials.
● provide a platform interface in which users can look out for custom

games shared by developers.
● provide a community page view for each shared game, in which users

can see and interact with stats/ratings of the game and comments by
others.

● provide a download/remove button integrated within the community
page to add the game to the library.

● provide a library to view the games installed on the user devices from
both source Cloud and Desktop-sync.

● remove the games unshared by developers from the library.
● provide a game-sessions view to create/join hosts in a local network.
● provide a game-lobby view to see other players/devices connected to

the host for a game session and launch the game session.
● provide an interactive in-game view to play the game; see the game

content rendered on camera frames and send input to the game by
touching the screen.

● include a common subsystem for all custom games, which performs
the graphical/network operations on games.

2.1.3.1 Common Graphics/Network Subsystem
The system should:

8

● be a dynamic load library to ensure that downloadable/storable game
binaries do not include it.

● provide a network functionality that any content update on a device
should simultaneously appear on other devices connected to the same
network.

● provide a graphics functionality that detects the planar surface from
camera frames and render a custom content anchored to the surface
on camera frames.

● provide motion detection to render the content with an accurate camera
angle on each frame.

● support advanced custom contents like 3D/2D model/animations and
UI elements.

● support advanced graphics effects like light-estimation, shadows,
anti-aliasing, etc.

2.1.4 Cloud System Functionality
The system should:

● create private repositories for the game projects.
● store the game models along with commit logs in a private repository.
● generate source code and compile binaries for Debugging/Release.
● not store the debugging/release binaries.
● create public repositories to share games.
● store the last shared version (binaries) of the game in a public

repository.
● store contents for the community page of the game in a public

repository.
● provide access for developers to their private repositories.
● provide access for users to public repositories.
● provide file transfer feature to upload/download project commits,

generated binaries, and shared games.

2.2. Nonfunctional Requirements

Nonfunctional requirements, which define the quality of the system will
be discussed. AugCards’ requirements include usability, reliability,
maintainability, accessibility,extendability and portability.

2.2.1 Usability
● Game creation should not require programming knowledge.
● Tools should be self-explanatory, shouldn’t require extensive tutorials

or guides to be understood.

9

● The expression of complex card game rules will be simplified using
flowcharts.

● AR-based graphics should have a refresh rate of at least 25 Hz to not
affect game experience adversely.

● Popular image formats such as PNG and JPEG should be supported
as assets.

● Popular graphical model/animation formats like OBJ and COLLADA
should be supported.

2.2.2 Reliability
● Should ensure that changes in game models are not lost on connection

errors.
● Should have a back-up mechanism for ongoing games in a network

failure situation.
● Contradictory game rules shouldn’t be allowed to cause errors.
● Cheats should be detected via checksums.

2.2.3 Maintainability
● Should be modular to reduce the complexity of the codebase.
● Network maintenance costs should be lower than 50TL per month

while profits are low.
● Should use design patterns that will allow changing used libraries.

2.2.4 Accessibility
● Should be free to download.
● Should have integration with Google Services.
● Should require less than 1GB of RAM.
● Project should be licensed with the MIT License since it provides the

most flexibility and will be less likely to lead to legal problems we may
come across in the future [4].

● Should utilize GPU usage since AR will highly consume memory and
load highly on the GPU. This will make it accessible devices with low
cpu power [5].

2.2.5 Extendability
● The addition of new possible game mechanics should not require

changing existing code.
● The code itself should be properly structured,using design patterns and

clever modularity.Adding new features and mechanics should require
minimal or zero amount of change in the code.

10

2.2.6 Portability
● Should not cause any compatibility error with changing Android device

sizes and camera resolutions.
● The game creation tool should run on Windows and Linux.

3. Final Architecture and Design Details
We had separate development progress for Desktop System and

Mobile System. We implemented the desktop system in Java language to
ensure multi-platform features. The UI design of desktop system developed
via FXML and CSS supported JavaFX. In data transmission from Desktop to
Mobile, we have decided to use JSON files to store game models along with
other resources. It eliminated any language dependencies in the development
progress of Mobile System. On the Mobile side, we implemented AR features
by using Vuforia Engine supported via Unity Engine. Other mobile features
developed via Unity Engine which uses C# programming language. In cloud
system, we used Firebase cloud services for storing 3D models and JSON
files used in the game, they are downloaded by the mobile system in the
runtime.

3.1 Overview

We will describe the architecture and design details under three
categories as Desktop, Mobile and Cloud systems in Figure 1.

Figure 1. Overview of Systems

3.2 Desktop System

In desktop, we used MVC software architecture to implement the
system. Using Java, we decided to make the development in the latest

11

version as Java 15.0.2. Using MVC, it is easy to distribute system functionality
in separate modules. While model modules defining the relations among the
data, view modules take the role of handling display and user inputs and
controller modules perform required manipulations on data regarding user
requests. In view modules, we defined view class and their properties by
using FXML and defined their styles via CSS. Then, we easily used these
defined view classes to design the view of the desktop system. In the data
output phase, we used JSON file format to store game models and a custom
library named as JSON-simple to handle parsing/formatting purposes.

3.3 Mobile System

In the mobile system, we used Unity Game engine for game rendering
tasks. Unity has an Android SDK for building games for building high
engaging 3D games in Android platform. We decided to use the Unity engine
for easier integration of Vuforia in Android platforms. Unity is very popular and
easy to use for deploying generated games in many platforms.
We also used the Vuforia Engine for the Augmented Reality implementation
on the mobile system. Vuforia Engine has Android SDK where mobile apps
can be built using Unity. Vuforia Engine eases the functions such as
recognizing images and rendering 3D models in real spaces.

3.4 Cloud System

In the cloud system, we used Firebase which is a Cloud Storage built
by Google. Firebase has a Unity SDK which made us integrate it with our
Unity project directly, easily and securely. Through Firebase, we stored the 3D
models of type DAE which were inputted by the user. We also stored JSON
files which specify game instance types, model-card association and event
scripts which were generated by the Desktop system. Unity project which runs
on Android device downloads and makes use of these files from Firebase
Storage service.

4. Development/Implementation Details

4.1. Desktop Application

Through the development of desktop system, our main focus was to
provide maximum usability. That’s why we tried to make game design as easy
as possible. We came up with a simple card and game modelling which
contains all essentials but any complex options. The essentials is only to
determine attributes, attribute values and specialization relationships. In game
event design, it is enough to determine modifications on game objects and
eventflow among the game. For this purpose, we developed a script based

12

event design for practicality and usability. To ensure usability, we should
provide an object oriented event design in which each event is defined over a
card, player, game, etc. For this manner, in event scope, users can refer to
attributes of an object to define modification and check rules over them, also,
users can refer to events to raise them. The details for the required script
types given in Table 1.

Scripts Modify Script Condition Script Call Script Wait Script

Accessibl
es

Numeric SET, ADD,
SUBTRACT,

DIVIDE,
MULTIPLY

CHECK, ITERATE - -

Text SET CHECK - -

Boolean SET, INVERT CHECK - -

Custom SET, CLONE,
EXCHANGE

CHECK, TYPEOF - -

List INSERT,
REMOVE,
SHUFFLE,

TRUNCATE,

CHECK, ITERATE - -

GameEvent - - RAISE WAIT

Table 1: Applicable Types on Accessibles under specific Script Type

For clarity, there are four types of scripts as Modify, Condition, Call and
Wait. As their name suggest, each has different effect; modify script to define
modification on attributes, condition script to determine a check rule and its
script branches, call script to raise an event by specifying event args and wait
script to define an wait for user input to hang up script execution. Scripts are
composed of two main components; the first is focus attribute or event, the
second is further specification of script type like SET, ADD, CHECK, RAISE,
etc. Some scripts require additional expressions to provide all their
functionality. Such expressions are given in Table 2.

In the game design, another important thing is to provide
customizability for visual models of cards. We provided a simple model

13

binding for defined cards. The overall implementation of the desktop system is
within such order.

Expressions Expressions to support scripting functionalities

Reference Expression to refer an accessible attributes or events

List Query Expression to define a query over list attributes

Init Expression to initialize a new value

Arithmetic Expression to perform arithmetic operations

Logic Expression to perform logic operations

Arithmetic
Condition

Expression to define arithmetical conditions

Text Condition Expression to define textual conditions

Logic Condition Expression to define logical conditions

Custom Type
Condition

Expression to define custom-type related conditions

List Condition Expression to define list related conditions

Event Call Expression to define an event raising by specifying
required event args

Table 2: Expression Types used along with Scripts

4.2. Mobile Application
Mobile application is implemented as a Unity project where Unity is an

engine that has Android SDK which is widely used for creating games that
require high user integration. Because the 3D models are added and used in
Unity, we thought using Vuforia SDK was a precise choice. Unity uses C#
scripts for modeling Game Object behaviors and other implementations.

In the implementation stage, 2 members were selected to be
responsible for learning Vuforia and AR technologies. These members started
the implementation from an empty Unity Vuforia integrated app. They started
by using trial and error to implement a wanted UI integrated AR behavior in a
dynamic approach. First, we tried to implement AR without depending on any
image target, then we changed our mind regarding the ease and reliability
using markers/image targets would give us. We started by implementing by
associating each 3D model with a separate image target. Later in the
implementation, we thought having separate image targets would decrease

14

the usability of the project as players would have to get a hardcopy print for
every game they would want to play. Hence, we changed our implementation
such that we had a specific generic marker/image target which indicated the
middle area of the game board and the 3D models of each player were
rendered with respect to the marker location.

We introduced a default cube model for cards with unspecified 3D
models. Additionally, each 3D model has a canvas as their child, which
displays the name of the card the 3D model represents and the card attributes
to be visible by all players when the card is played.
Each 3D model is downloaded from Firebase Storage and each 3D model is
associated with specified cards which are read from a models.JSON file from
Firebase Storage. Then, in runtime when a game instance is played, the
model associated with the card is instantiated as a child of the marker. For
implementing clicking on 3D models, cube colliders are used. The name of
each model is encoded with the associated card ID for easing the referring.

During implementation the team used Unity Collab which is a cloud
hosted environment that enables small teams to sync on a Unity project. This
way, we could collaborate on the Unity project without having to depend on an
external version control system.

4.3. Mobile Application Network
The mobile application uses the Unity UNet framework to handle the

server-client logic of the game. The UNet framework is a framework that
allows developers to integrate multiplayer capabilities into their game with
ease. The network logic of the game is as follows: When a player hosts a
game on their mobile device, the framework creates both a server and a local
client on their machine as in Figure 2. This client is created so that all players,
whether they be local or remote, can be treated the same way, reducing
overhead function calls. Whenever a new client joins, they are provided with a
unique connection to the network, a unique player object over which they
have authority and networked objects that need to be synchronized across the
network.

Figure 2: The network authority states in UNet.

15

The server and clients can communicate over either ‘Command’ and
‘RPC’ calls or network messages. Commands are called on the server by the
clients to run certain events, and RPCs are similarly called on the clients by a
server. The network message approach allows for fine-tuning of what is sent
over the network, thus we chose to implement the network communication
using custom network messages and a custom network manager, which
handles different types of messages and makes relevant function calls to
relevant classes.

5. Testing Details
Testing is of great importance to enable a smooth gameplay for our

users. The testing details executed during the implementation of AugCards
are provided in this section.

5.1. Continuous Integration
As a team we picked up the Software Engineering principles into

consideration by using the Continuous Integration principle. In development,
every developer integrated their code which has no errors, into a main branch
frequently. We wrote test code with high line coverage in order to ensure that
each pushed code to the main branch is free of errors.

5.2. User Groups
As AugCards is an engine, testing using a user group was vital in order

to ensure that the engine is as user-friendly as we intended it to be. Also, to
fine-tune any variability points, user feedback was of great importance.
Hence, we formed a user group consisting of gamers and game development
enthusiasts. Each user created a card game using the AugCards engine and
gave the development team feedback and reported bugs.

6. Maintenance Plan and Details
Maintenance is an important aspect of AugCards regarding It is server

dependent. Additionally, the libraries need to be kept up to date due to the fact
that they might get deprecated.

6.1. Server Maintenance
AugCards uses firebase cloud for models and JSON files to be

transported which form the game the user has created. Free version of
Firebase Storage was used in this project, however in the maintenance
process rental services need to be payed in each term. Also, depending on
the user traffic, the team might have to switch to a faster responsive service.

16

6.2. Google Play Store
As a team one of our goals is to upload AugCards to Google Play Store

after we get necessary feedback on our product and implement the changes.
Users agreements will be written in order to send It to the reviewing
authorities in the future.

6.3. New Versions
New versions which involve UI and variability point changes can be

frequently released. The new versions of AugCards will get closer each time
to become a fully developed engine.

6.4. Issue Tracking

AugCards has an open source GitHub repository which is public.
Issues posted by the users will be frequently addressed by our team. This
way, AugCards will become a better product with less bugs as It is used.

7. Other Project Elements

7.1. Consideration of Various Factors in Engineering Design
Various factors were considered while designing our project. The

factors are scored on a scale of 0-10, taking how much they might be affected
by our project into consideration. The scores can be found in Table 3 below.
The reasonings for the scores and more details can be found in the respective
subsections.

Factor Score (0-10; 0 not affected, 10 very crucial)

Public Health 1

Public Safety 6

Public Welfare 5

Global 4

Social 7

Cultural 6

Economic 6

Table 3: How our project considers some factors

17

7.1.1 Public Health
We do not believe that public health will be very much affected by our

application, since our application is just a way for users to create and play
games with their friends. The users’ mental health may improve by socialising,
and that’s why 1 is given as a score.

7.1.2 Public Safety
Since the app offers a variety of options to users, users may use this

variety to create games, images or characters that may include offensive
figures to others, which might possibly threaten public safety. In order to
prevent this, AugCards will have a way of filtering the media, game style and
other components that may be a potential threat to the users. Public Safety
and ways to protect it must be one of our priorities, that’s why 6 is given as a
score.

7.1.3 Public Welfare
We believe the welfare of society will be affected by our game since we

will provide a way for people to enjoy themselves and spend leisure time with
their friends. This will lead to people becoming happier and releasing stress.
However, welfare is not only about happiness, so 5 is given as a score.

7.1.4 Global Factors
Since our game will allow users from all around the world to create and

share games, we believe our application will have a global impact. However,
the card game community is not a very large niche, so we do not expect a
ground-breaking impact and that’s why 4 is given as a score.

7.1.5 Social Factors
We believe people will be able to socialise using our application and

they will be generally happier and more social. Each game represents a
community through a platform page in which players interact with the game
and others. Also, custom games on AugCards application are AR featured
card games and are supposed to be played with a group of people around a
table, which is another socializing factor. That’s why 7 is given as a score.

7.1.6 Cultural Factors
Our application will allow users from different countries to create and

share games with each other. We believe that each game will have cultural
influences from the developer and when a foreigner plays their game, they will
be exposed to a new culture. This will lead to a cultural exchange between
different countries which is why 6 was given as a score.

18

7.1.7 Economic Factors
Card game creating companies that sell printed cards come to mind

when talking about factors, and we need to consider their revenues as well
when we are creating our application. The card game developers may also
need to pay for the work that they do, which also needs to be considered, so
economic factors are given a score of 6.

7.2. Ethics and Professional Responsibilities
In this section of the Final Report, the ethical and professional

responsibilities that arise with the development of this project are going to be
discussed.

7.2.1 Ethics
Regarding the global impact, the goal of AugCards is to be an engine

such that everyone can create their card games. AugCards will have a global
impact on the card game making process. Regarding the impact in societal
context, the content of the games should be monitored so that they do not
contain offensive content, hate symbols or speech. This is important since we
intend to create a platform for people that want to have fun playing and
designing games.

Another issue is that we need to keep the creative rights of game
developers in mind, since these rights allow developers to protect their work
from being stolen or copied. The games should also be monitored to make
sure that this occurs as little as possible.

Privacy of the users’ data is also prioritised, since we need to keep
data generated by users. The data will only be kept for the purpose of
enabling the player to play, and not be shared with third parties.

Regarding the economic impact, AugCards is free but we may
introduce advertisements in the app for monetizing in the future to generate
profit. The economic constraints we faced included the cost of Firebase and
3D models to be used. The softwares we used was in free mode.
The environmental impact of AugCards was related to the electricity
consumption which was insignificantly small.

7.2.2 Professional Responsibilities
We communicated through online meetings and messaging, minding

the pandemic. We conducted weekly meetings through Discord, an online
communication application [7]. For important decisions and changes, we used
WhatsApp to communicate.We kept our GitHub repository private for the time
being since it would benefit us in terms of security.

19

7.3. Judgements and Impacts to Various Contexts
The impact levels in Table 4 are out of 10.

Impact Level Impact

Impact in Societal Context 8 Variety of card games in
various contexts can be
generated with this engine
which is risky in socitaly.

Impact in Economic Context 1 Costs of using cloud and costs
of using 3D models restrict
usability.

Impact in Environmental
Context

2 Consumption of electricity
when the engine is used is
small.

Impact in Global Context 6 We generated a tool that
eases the card game creating
process.

Table 4: Impacts of judgement

7.4. Teamwork Details

In this section, each member’s contributions to the project will be explained
.
7.4.1. Contributing and functioning effectively on the team

Member Contributions

Çerağ Worked in the implementation of the AR, system and cloud system.

Yusuf Worked on designing the event generation and parsing logic, and
related GUI. Wrote the event running logic for the mobile component.

Yiğit Worked in the implementation of the AR system, mobile system and
network system.

Burak
Worked on backend development of Desktop application, specifically,
custom game concepts and instance design. Worked on designing
the event generation and parsing logic.Drew UML diagrams [8].

Bora Worked in the UI and front-end of desktop and mobile. Implemented
the initial mobile application as a starting point.

Table 5: Contributions of each member

20

7.4.2. Helping creating a collaborative and inclusive environment

Member Contributions

Çerağ Helped set up meetings and resolved most of the conflicts among
group members.

Yusuf Helped setting up a project management software Trello [6].
Suggested enforcing code reviews.

Yiğit Set up the GitHub repositories and Google Drive folder.

Burak Participated in group meetings and other scheduled works.

Bora Created a written to do list & summary after every meeting.

Table 6: How each member helped create a collaborative and inclusive
environment

7.4.3. Taking lead role and sharing leadership on the team

Member Contributions

Çerağ Participated in the group’s thought process.

Yusuf Took an important part in the decisions regarding the implementation.
Took lead in coordinating desktop and mobile systems.

Yiğit Took part in the decision making process and dividing tasks.

Burak Contributed into the decision making process.

Bora Made sure that everyone took equal responsibility.

Table 7: How each member took leadership roles

7.5. Meeting objectives

This part of the report discusses how the product met the objectives
stated in the Requirements part of the report.

7.5.1. Functional Requirements
Functional requirements aid in capturing the system behavior in terms

of functions, systems and services. User functionality, Desktop system, Mobile
system and Cloud system requirements will be provided.

21

7.5.1.1. User Functionality
● Users are either game-developers or players.

7.5.1.2. Player Functionality
● Players can play downloaded games.
● Players can create and connect to private hosts for game sessions in

the local network.
● Players should have the required number of

human-players/mobile-devices connected to the host regarding the
player constraints of the game.

● Players should set up the camera of the mobile device regarding that
game content will be rendered on a planar surface with respect to the
marker.

● Players can send inputs to the game by touching the screen.
● Players can interact with game instances/cards and perform certain

game events.
● Players can see other players’ interaction and ongoing game events

simultaneously.

7.5.1.3. Game-Developer Functionality
The system can:

● Developers do not need programming knowledge.
● Developers can create custom card games.

By using UI option of AugCards engine, developers are able to define:
● required/custom game instances like the player, card, card set, card

types, etc.,
● properties of game instances like player’s health, card’s properties

in-depth (type, initial value, constant).
● hierarchical relationships between defined game instances.
● game events and their effects on game instances.
● trigger mechanism of game events.
● trigger mechanism of user-input events.
● rules for the events and the properties of game instances.
● custom graphical models/assets for corresponding game instances.
● Developers can upload/update the models for their own created games

on the cloud.

7.5.1.4. Desktop System Functionality
The system can:

● create local/cloud repositories for custom game projects.
● delete all repository files if the developer decides to remove the game.

22

● restore a custom game from their cloud/local repository.
● provide a sophisticated and interactive UI for each model design

feature.
● provide relationships such as defining new instance type, inserting a

new line into instance tables to define properties, columns for the detail
of properties like type, initial value, etc.

● provide a scripting tool for events-triggers; definition of triggers involves
check rules, updates for accessible properties, and raising other
events.

● provide import and bind graphical models to game instances and
events.

7.5.1.5. Mobile System Functionality
The system can:

● provide a game-sessions view to create/join hosts in a local network.
● provide a game-lobby view to see other players/devices connected to

the host for a game session and launch the game session.
● provide an interactive in-game view to play the game; see the game

content rendered on camera frames and send input to the game by
touching the screen.

● include a common subsystem for all custom games, which performs
the graphical/network operations on games.

7.5.1.6. Common Graphics/Network Subsystem
The system can:

● be a dynamic load library to ensure that downloadable/storable game
binaries do not include it.

● provide a network functionality that any content update on a device
should simultaneously appear on other devices connected to the same
network.

● provide a graphics functionality that detects the planar surface from
camera frames and render a custom content anchored to the surface
on camera frames.

● provide motion detection to render the content with an accurate camera
angle on each frame.

● support advanced custom contents like 3D/2D model/animations and
UI elements which highly impacts ar quality [7].

● support advanced graphics effects like light-estimation, shadows,
anti-aliasing, etc.

7.5.1.7. Cloud System Functionality
The system can:

23

● store the 3D game models.
● store json files regarding the events created by the developer.
● store json files regarding the game instances created by the developer.

7.5.2. Nonfunctional Requirements
Nonfunctional requirements, which define the quality of the system will be
discussed. AugCards’ requirements include usability, reliability, maintainability,
accessibility,extendability and potability.

7.5.2.1. Usability
● Game creation does not require programming knowledge.
● Tools are self-explanatory, and do not require extensive tutorials or

guides to be understood.
● The expression of complex card game rules are simplified using

event-based scripts.
● AR-based graphics have a refresh rate of at least 25 Hz to not affect

game experience adversely.
● Popular graphical model/animation formats like DAE and COLLADA

are supported.

7.5.2.2. Reliability
● Ensures that changes in game models are not lost on connection

errors.
● Has a back-up mechanism for ongoing games in a network failure

situation.
● Contradictory game rules aren’t allowed to cause errors.

7.5.2.3. Maintainability
● Is modular to reduce the complexity of the codebase.
● Network maintenance costs are lower than 50TL per month while

profits are low.

7.5.2.4. Accessibility
● Is free to download.
● Requires less than 1GB of RAM.

7.5.2.5. Extendability
● The addition of new possible game mechanics does not require

changing existing code.

24

● The code itself is properly structured,using design patterns and clever
modularity.Adding new features and mechanics requires minimal or
zero amount of change in the code.

7.5.2.6. Portability
● Does not cause any compatibility error with changing Android device

sizes and camera resolutions.
● The game creation tool runs on Windows.

7.6. New Knowledge Acquired and Applied

It was not possible for the team to develop AugCards with the
knowledge we already had, none of us were familiar with AR technologies,
Unity and game development beforehand. Hence, we did learning on the
topics of:

● Vuforia Library
● Unity Engine
● Firebase Cloud
● Android Development
● Networking Systems

Developing an engine required the use of gaming technologies which
were not covered in Bilkent’s lectures. However, in scripting the event
processes from the game, Bilkent’s lectures were helpful. For self-learning we
utilized gray literature review, online material and trial-error. Gray literature
and online materials were very helpful as they provided tutorials on gaming
technologies. However, the best way to learn was trial and error, as we could
learn from our mistakes.

8. Conclusion and Future Work

8.1. Conclusion
All in all, we succeeded in building the multiplayer AR mobile game creation
engine that we aimed for at the start of senior year. AugCards is an engine
where various card games can be generated freely by the users with AR
visual support. We are content with what we have managed to achieve. The
project consisted of a number of systems and we managed to merge them
together as a working engine in a relatively small time. We learned a lot
during the design and implementation of the project, we would be happy to
get advice on AugCards, anytime.

25

8.2. Future Work

Our goal is to create a platform for AugCards, where created games can be
shared in the platform to be played by many users. We also want to make
AugCards downloadable from App Stores after revising AugCards after
receiving feedback. We will also extend the engine capabilities and provide
more variability points in the game creating phase for users.

9. Glossary
Game Instance A specific instance in AugCards to
represent the custom game objects like card, player, avatar defined by the
developer.

Game Event A specific event in AugCards to represent
the custom game events like attack, play card or navigate to the next turn,
defined by the developer.

Event Trigger An event trigger represents the trigger
mechanisms for defined events.

Game Rules A set of conditioners for a game specified
by Developers in AugCards to represent the rules of the created game.

Session A session refers to a game session in which
the game is played by the players.

Asset An abstract class to generalize the
graphical elements.

Animation A specific Asset to represent the
pre-designed transform sequence for graphical models within animation data.

Developer A developer of AugCards represents the
type of actor in the system which creates card games.

Player A player of AugCards represents the type of
actor in the system which attends games.

Platform A platform in AugCards represents the
common point where users and developers meet through shared games.

26

Game Library A game library in AugCards represents the
customizable game storage where users can insert new ones and pick
favorites.

Game Lobby A game lobby in AugCards represents
created and in-preparation game sessions in which players can join.

GPU Graphics Processing Unit. GPU is designed
for handling graphics operations, including 2D and 3D calculations to render
3D graphics [5].

Git A version control system used for project
teams for reviewing and tracing code changes.

GitHub An online platform which hosts software
development versions for software development teams by using Git.

Trello Trello is a collaboration tool that organizes
your projects into boards [6].

Android System The Android operating system is a mobile
operating system developed for mobile platforms.

Discord an American VoIP, instant messaging and
digital distribution platform designed for creating communities [7].

WhatsApp WhatsApp is a messenger cross-platform
instant messaging application.

Dulst Dulst is an online card game playing
software [2].

UML Unified Modeling Language, is a
standardized modeling language consisting of an integrated set of diagrams
[8].

27

https://paperpile.com/c/QHis7I/5Dvm
https://paperpile.com/c/QHis7I/5oAj
https://paperpile.com/c/QHis7I/P0WN
https://paperpile.com/c/QHis7I/kmnA
https://paperpile.com/c/QHis7I/39S2

10. References

[1] J. Clement, “Topic: Mobile gaming market in the U.S.,” Statista.
[Online].Available:
https://www.statista.com/topics/1906/mobile-gaming/.[Accessed:
09-Oct-2020].

[2] “Dulst.” [Online]. Available: https://dulst.com/. [Accessed: 08-Oct-2020]

[3] “Legends of Runeterra.” [Online]. Available:
https://playruneterra.com/tr-tr/. [Accessed: 09-Oct-2020]

[4] “MIT License.” [Online]. Available: https://mit-license.org/. [Accessed:
08-Oct-2020]

[5] “GPU (Graphics Processing Unit) Definition.” [Online]. Available:
https://techterms.com/definition/gpu. [Accessed: 21-Nov-2020]

[6] Trello, “What is Trello?” [Online]. Available: https://help.trello.com.
[Accessed: 21-Nov-2020]

[7] Contributors to Wikimedia projects, “Discord (software),” 30-Jan-2016.
[Online]. Available: https://en.wikipedia.org/wiki/Discord_(software).
[Accessed: 21-Nov-2020]

[8] “What is Unified Modeling Language (UML)?” [Online]. Available:
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/w
hat-is-uml/. [Accessed: 21-Nov-2020]

28

http://paperpile.com/b/QHis7I/yqRqR
https://dulst.com/
http://paperpile.com/b/QHis7I/yqRqR
http://paperpile.com/b/QHis7I/4LblQ
https://playruneterra.com/tr-tr/
http://paperpile.com/b/QHis7I/4LblQ
http://paperpile.com/b/QHis7I/5xz34
https://mit-license.org/
http://paperpile.com/b/QHis7I/5xz34
http://paperpile.com/b/QHis7I/5xz34
http://paperpile.com/b/QHis7I/5Dvm
https://techterms.com/definition/gpu
http://paperpile.com/b/QHis7I/5Dvm
http://paperpile.com/b/QHis7I/5oAj
https://help.trello.com
http://paperpile.com/b/QHis7I/5oAj
http://paperpile.com/b/QHis7I/5oAj
http://paperpile.com/b/QHis7I/P0WN
http://paperpile.com/b/QHis7I/P0WN
https://en.wikipedia.org/wiki/Discord_(software)
http://paperpile.com/b/QHis7I/P0WN
http://paperpile.com/b/QHis7I/P0WN
http://paperpile.com/b/QHis7I/39S2
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
http://paperpile.com/b/QHis7I/39S2

User Manual

29

Introduction

With AugCards, card game designers can implement their card game.
The project has a desktop and mobile component. Game creators can create
their games in the desktop component. The games run on Android mobile
devices. Created games are in JSON format. Games have 3 main
components; card manager, event manager and visual manager. In the card
component, you can define what exists in the game, event manager is used to
write the game logic and visual manager is used to select textures and
models for game objects.

Desktop Component
When AugCards is launched, users are welcomed by the screen as in

Figure 3.

Figure 3. Login Screen

Opening A Project

The options are creating a new project or opening an already existing project.

30

Opening A New Project
To open a new project, users should click on the New Project button as in
Figure 4.

Figure 4. Project Creation

This opens a project creation wizard window in which users choose a project
name and click create. Created projects will be saved in
.../User/Documents/AugCards directory.

Loading An Existing Project
To load a project, users should click on the Open Project button as in Figure
5.

Figure 5. Project Load

31

This opens a project loading window in which users can choose a project from
the list to open. The projects are read from .../User/Documents/AugCards
directory as in Figure 6.

Figure 6. Games
Users can also manually add a valid project to this directory if they backed-up
a project.
Basic Navigation
When a new project is created, this screen will be shown as in Figure 7.

Figure 7. Menu

Games have 3 main components; card manager, event manager and visual
manager as in Figure 8.

Figure 8. Bar

32

To open a different manager, use the top bar.

Figure 9. Card manager

A Card manager can look like as in Figure 9 after adding some instances.
On the Hierarchy section; Card types are shown. Click a type on the
hierarchy to display the items under it. This will also show the type
attributes on the right side. Cards are not shown in the hierarchy to keep
the hierarchy lighter and simpler.On the Items section, types and cards under
the selected type are shown. To indicate types and cards visually; cards are
colored green and subtypes are colored blue/orange. Click a green card
button to open card attribute values.

Card Manager

In AugCards, a new project comes with 3 predefined constructs. These
constructs are GAME, PLAYER and CARD. CARD can contain game cards
and/or card types/subtypes. Types can have their subtypes as well. Types
define required attributes for cards so that the cards under that type must
have a value for these attributes. More detail will be given in the subsequent
sections.

Adding An Attribute
When an attribute is added to a type, cards under that subtype should have a
value for that attribute as in Figure 10.

33

Figure 10. Attributes

To add a new attribute, click on Add Attribute as in Figure 11.

Figure 11. Add Attributes
This will bring an attribute field. Here, Attribute Name field should be filled with
the attribute’s name and a type for the attribute should be selected as in
Figure 12.

Figure 12. Attribute Name field
Then click OK. This will create the attribute. Note that filling these fields is not
optional as in Figure 13.

Figure 13. Attribute Create

34

When the attribute is created, a third field appears. This field specifies
whether the attribute should be visible to the players in game. Some attributes
may be left hidden so that they are used only for in game events.

Removing Attributes

Click remove to remove the attribute.

Attribute Types

Numeric
Attribute

Value is a number. Example use: value attribute for a card.

Text Attribute Value is a text. Example use: Description for a card.

Boolean
Attribute

Value is True or False. Example use: Is card chosen.

Card Attribute Value is another Card. Example use: Specifying the card type that
the card is weak against.

Deck Attribute Value is a Deck. Example use: When that card is played, the
cards in deck are also played.

Table 8: Attribute Types

Adding Card/Deck Attributes

Figure 14. Attribute selection
When an attribute of type Deck or Card is created, a new selection appears
as in Figure 14. Here, you should specify which types of cards this Deck can
contain (or Card attribute can be). The other details are the same as other
attributes.

35

Attribute Inheritance

Figure 15. Attribute inheritance example

Figure 16. Attribute inheritance example 2

In the above examples as in Figure 15 and 16, Unit Card type is a subtype of
CARD type. Therefore, mana and description attributes are inherited to the
Unit Card.

Attribute Visibility

There are options for attributes’ visibility. You can choose to show an attribute
on screen canvas, AR marker. You can make them hidden. For example, a
Player’s card object can be shown on AR, the deck can be shown on the
screen and player luck can be hidden.

36

Type Creation

Figure 17. Create type

To create a type, click create type as in Figure 17.

Figure 18. Create type click

In the opened field, type the type name and press ENTER as in Figure 18.

Removing A Type

Figure 19. Remove Type

To remove a type, right click and choose delete as in Figure 19.

Card Creation
Creating a card is similar to creating a type. Just click create card instead. In
the opened field, type the card name and press ENTER.

Removing A Card
Removing cards is the same as removing types.

37

Setting Attribute Value

After setting attributes of a type, specify the values for cards as in Figure 20.

Figure 20. Setting Attribute Value
After adding attributes as shown above to a type, open a card under that type
as in Figure 21.

Figure 21. Open a card

You can see that there are value fields for each attribute of the type.

Setting Numeric Attribute Value

Figure 22. Open a card value field

38

Type a number to the value field. Initial value is 0. Note that you can only type
numbers here as in Figure 22.

Setting Text Attribute Value

Figure 23. Text to the value field

Type a text to the value field. Initial value is “-”. Note that some characters and
names are not allowed as in Figure 23.

Forbidden Inputs.
● ARGS
● ITERATE
● THIS
● GAME
● SELECT_NEXT
● SELECT_FIRST
● POP

Those inputs are not allowed because they are reserved keywords for out
event system.

Setting Boolean Attribute Value

Figure 24. Dropdown menu

Select True or False from the dropdown menu as in Figure 24.

Setting Deck Attribute Value

Figure 25. Set cards

39

Click set cards as in Figure 25. This will open a popup in which you can set
the cards in the deck as in Figure 26. Note that you change the deck content
via events as well.

Figure 26. Set the cards
Left side shows available cards and the right side shows the currently added
cards. Click a card on the left side to add to deck and click right side to
remove from the deck as in Figure 27.

Figure 27. Deck filled

40

In the above example, a deck is filled with 5 cards from the available cards. It
is possible to add the same card multiple times.

Player & Game Objects
Player and Game are special constructs in AugCards as in Figure 28.

Figure 28. Special constructs

They have attributes and attribute values the same way Cards have.
However, they define their attributes and values at the same time. I.e they
don’t have subtypes etc.
Game has two fixed attributes named Players and ActivePlayer which users
cannot modify as in Figure 29. Note that Players is a Deck attribute and
ActivePlayer is a Card attribute. Player is not a Card in actual sense. In
AugCards terminology, or game objects are “Card” type and all lists are Deck
typed. These two predefined attributes are used in the game logic.

Figure 29. Fixed attributes

As explained above, Player object has attribute and attribute value together.
The deck attributes in Player are shown in game each list being a column of
cards. Other attributes of the player are shown on the upper screen.

41

Event Manager

Figure 30. Event design scene

The general view of the event design scene as in Figure 30. Any event
modification can be performed over game instance selection from the mostleft
area. Some options:

● Add event - define new event
● Add argument - define argument types for selected event
● Wait options - set text visual when a wait triggered over such event

The view of inserting a new argument. Users need to select an event to add a
new event. Then, a pop-up window will appear to specify details of the
argument like name and type as in Figure 31.

Figure 31. Argument scene

42

In the most right broad area, users can edit the scripts of the selected event.
In script area, there are button for each script type:

● Modify Script - attribute modification scripts
● Condition Script - check rules and their script block for branching after

checks
● Call Script - raising an event through specifying its event arguments
● Wait Script - hanging up the game while waiting an event to occur

Inserted scripts transformed into layout views while they are not modified.
In script modification, users can select accessible attributes within the event
scope (game instance).

Modify Script

Figure 32. Modify script

The different types of modifications for a numeric attribute as in Figure 32.
“Set” allows the developer to set the value of a numeric attribute, “Add”,
“Subtract”, “Multiply” and “Divide” perform the corresponding arithmetic
operations on the attribute when another value is provided as in Figure 33.

43

Figure 33. Arithmetic operations on the attribute

Setting the value for a numeric attribute as in Figure 34. In the above
example, a numeric value used to define required modification.

Figure 34. Set the value for a numeric attribute

Arithmetic operations can be chained to perform complicated calculations.
Also, it is possible to refer to other numeric attributes to use them in operation.

44

Case Script

Figure 35. Case script

A case script can be of type Check and Iterate as in Figure 35. Check is
similar to the If, Else and Iterate is similar to for. You can iterate a deck or over
a number.

Figure 36. Case script True and False blocks

45

Case script has True and False blocks under it as in Figure 36. When the
checked case is true, true block scripts are executed and the reverse is true
for vice versa.

Raise Event

Figure 37. Raise event

Users can define event call scripts by selecting the event to raise and
specifying event arguments as in Figure 37. Similar to modification, in
argument specification, an attribute reference or new value can be used.

46

Wait Script

Figure 38. Wait script

Users can define wait scripts by selecting only event references as in Figure
38.

Figure 39. Event references

Users can define multiple events to wait at once as in Figure 39.

Figure 40. Layout view of the wait script

Here the layout view of the wait script as in Figure 40.

47

Figure 41.Modification

On custom attribute, there are three modification type can be applied as in
Figure 41:

● SET
● CLONE
● EXCHANGE

Figure 42. Attributes of a custom instance

Users can refer into further attributes of a custom instance as in Figure 42 and
as in Figure 43.

Figure 43. Attributes of a custom instance

48

There are some options to query a deck.

Figure 44. Options to query a deck.

On list attributes, there are four modification types as in Figure 44:
● Insert
● Remove
● Shuffle
● Truncate

Visual Manager

Figure 45. Visual Manager

Select 3D models and 2D textures here as in Figure 45 as in Figure 46.

49

Figure 46. Select 3D models and 2D textures

Models in the .../User/Documents/AugCards/models directory are shown as
options. The game will use these 2D and 3D models as game assets for the
objects.

Mobile Component

To use the mobile component, the user should either print or draw the marker
that is provided to the right. This marker is used as a way to track where
objects should be placed using Augmented Reality as in Figure 47.

Figure 47. Marker

50

Launch Scene

Figure 48. Launch

In the launch scene, the player can choose to play the game by pressing the
“Play” button, Get information about the game’s development team by
pressing the “Info” button, configure various game options by pressing the
“Options” button, and quit the game by pressing the “Quit” button as in Figure
48.

Game Selection Scene

Figure 49. Game Selection

51

When the player chooses to play a game, they are presented with the
different games that are available for them to play as in Figure 49. These
games are shown in a list, and the user can choose a game to play a round.

Game Hosting Scene

Figure 50. Game hosting

After the player chooses which game they would like to play, they are
presented with the options to host a lobby or join a pre-existing lobby by
providing the IP address of that lobby as in Figure 50. The “Host Game”
button allows a user to host a game on their local machine for other players to
join. When the player wants to join a game, they can fill out the input field that
says “Enter IP address of server” with the IP address of the server that they
would like to join and click the “Join Game” button.

52

Lobby Scene

Figure 51. Game Selection

In the lobby scene, the host is presented with the options to start playing the
game or to stop hosting the game as in Figure 51. If the host presses the
“Start Game” button, the game will start on all connected clients. If the host
decides to press the “Stop Hosting” button instead, all clients and the host
themselves are disconnected from the game lobby. The status of the server,
the IP address of the host and the number of connected clients are also
visible on this scene, and this is what the clients of a hosted game can see.
They do not see the options that the host is provided with.

Main Game Scene

Figure 52. Ingame model

53

Figure 53. Ingame Cards

When the game starts, the users can see the hands that are handed to them
Figure 52. Ingame. On the screen, the players can see the cards that they
have, which player’s turn it is, any relevant values for the game and when it’s
their turn, the possible actions that they can take during their turn Figure 53.
Ingame. The players can also see the game field through their camera in
Augmented Reality. The players can toggle whether their hand is visible and
whether the values of cards are visible. As an example, when the user is
playing Blackjack or 21, they can see the sum of their hand and they are
provided with the options to a) “Hit” and b) “Stand”, and they can choose to
either a) draw a card or b) stand with their hand and sum. Some actions may
require additional steps, such as choosing a card or entering a value to apply
that action. The result of clicking an event can be seen in Figures 54 (before)
and 55 (after), where a blackjack game is taking place.

Figure 54: Ingame Rendering of Cards Before Hit

54

Figure 55: Ingame Rendering of Cards After Hit

55

