

Bilkent University

Department Of Computer Engineering

`

Senior Design Project

Project short-name: AugCards

Analysis Report

Yusuf Avcı, Burak Mutlu, Çerağ Oğuztüzün, Yiğit Görgülü, Bora Kurucu

Supervisor: Prof. Dr. Uğur Güdükbay

Jury Members: Asst. Prof. Dr. Can Alkan, Assoc. Prof. Dr. Çiğdem Gündüz Demir

Innovation Expert: Prof. Dr. Veysi İşler

Analysis Report

October 12, 2020

This report is submitted to the Department of Computer Engineering of Bilkent

University in partial fulfillment of the requirements of the Senior Design Project

course CS491/2.

1

Contents

1 Introduction 4

2 Current System 5

3 Proposed System 5

3.1 Overview 5

3.2 Functional Requirements 6

3.2.1 User Functionality 6

3.2.1.1 Player Functionality 7

3.2.1.2 Game-Developer Functionality 7

3.2.2 Desktop System Functionality 8

3.2.3 Mobile System Functionality 9

3.2.3.1 Common Graphics/Network Subsystem 10

3.2.4 Cloud System Functionality 10

3.3 Nonfunctional Requirements 11

3.3.1 Usability 11

3.3.2 Reliability 11

3.3.3 Maintainability 12

3.3.4 Accessibility 12

3.3.5 Extendability 12

3.3.6 Portability 12

3.4 Pseudo Requirements 12

3.5 System Models 13

3.5.1 Scenarios 13

3.5.2 Use Case Model 26

3.5.2.1 Desktop System Use Case Model 26

3.5.2.2 Mobile System Use Case Model 27

3.5.3 Object and Class Model 28

3.5.3.1 Desktop System Class Model 28

3.5.3.2 Mobile System Class Model 31

3.5.4 Dynamic Models 34

3.5.4.1 Sequence Diagrams 34

3.5.4.1.1 Login Sequence Diagram 34

3.5.4.1.2 Create Game Instance Sequence Diagram 35

3.5.4.1.3 Create Game Event Sequence Diagram 36

3.5.4.1.4 Create Instance View Sequence Diagram 37

3.5.4.1.5 Play Game Sequence Diagram 38

3.5.4.1.6 Manage Game Library Sequence Diagram 39

3.5.4.2 Activity Diagrams 40

3.5.4.2.1 Mobile System Activity Diagram 40

3.5.4.2.2 Desktop System Activity Diagram 41

3.5.5 User Interface-Navigational Paths and Screen Mockups 42

3.5.5.1 Desktop Application Mockups 43

3.5.5.2 Object Creation Mockups 43

3.5.5.3 Event Creation Mockup 49

3.5.5.4 Layout Setttings Mockups 50

3.5.5.5 Mobile Application Mockups 53

4 Other Analysis Elements 60

4.1 Consideration of Various Factors 60

4.1.1 Public Safety 60

4.2 Risks and Alternatives 60

4.3 Project Plan 61

4.4 Ensuring Proper Teamwork 63

4.4.1 Weekly Meetings 63

4.4.2 Using Project Management Tools 64

4.4.3 Code Review 64

4.4.4 Pair Tasks 64

4.5 Ethics and Professional Responsibilities 65

4.5.1 Ethics 65

4.5.2 Professional Responsibilities 65

4.6 Planning for New Knowledge and Learning Strategies 65

5 Glossary 66

6 References 69

3

Analysis Report

Project short-name: AugCards

1 Introduction
Mobile games are becoming more popular day by day [1]. With mobile

gaming, a new era in the gaming sector has emerged. People started to

lose their habit and passion of playing games with physical equipment,

such as board games and card games. The emergence of mobile gaming,

due to its appealing graphics, ability to play online, and the sky-high

imagination of the mobile game developers, lead people to quit playing

card games physically. Additionally, card games have limited assets, rigid

visuals, and static rules.

The main philosophy of AugCards is reuniting the tradition and old-school

fun of playing card games with your friends sitting around the table, the

dynamism of mobile games. AugCard gives users the freedom to create

their own cards with their own assets, introduce their own animations,

and specify their own game rules.

Imagine you and your friends sitting around a table and want to have a

good time. AugCard helps to limit social isolation caused by individual

gaming, and bring the people together to create a game. You and your

friends would first open the AugCards Desktop application and create the

game cards, the event triggers, game animations, rules. Even the

complex rules can simply be introduced with the help of user-friendly

design which makes use of flowcharts and such structures. After the game

is complete, you and your friends can open the complementary AugCards

mobile application and everyone can tune in to play the game you just

created, a network is established among the table and multiplayer mode is

enabled. The cards and the AR versions of the assets on the cards

accompanied by animations are seen on the table by everyone looking

through the cam of AugCards. If you are proud of the game you have

created, you can share it on the AugCards platform for other users to

play, and play a game made by another user.

4

https://paperpile.com/c/QHis7I/TXCtK

In this report, we will provide an analysis of the system. First, differences

and weak points of the existing systems will be discussed. Then, the

proposed system will be described, given attention to its featuristic

details. Requirements being functional, non-functional and pseudo

requirements will be provided. Also, models of the systems will be

provided, such as class diagrams, and dynamic models. After, project

screen mock-ups and app navigations will be included. Last but not least,

a discussion on the social aspect of the project will be stated as a

conclusion.

2 Current System
Although there are many web-based card game making platforms, there

isn’t any mobile integrated one that provides AR supported visuals and

animations. Dulst is a free platform that provides users to create their

own cards and play with them on desktop [2]. Dulst also allows the users

to share the games they have created and allows users to play with other

users and review their games. We aim our project’s desktop side to be an

extended version of what Dulst has implemented. We aim to extend what

Dulst, a platform with prominent success in this domain, achieved by

adding mobile game and AR features to conform to the card game

tradition of playing it with a group of friends sitting around a table.

3 Proposed System

3.1 Overview
AugCards is a card game development tool where users can create their

own cards and build custom games to be played on Android devices with

multiplayer capabilities and AR supported visuals. The tool is innovative in

the sense that it transforms the user-designed game logic and cards into

AR multiplayer mobile games that can be played instantaneously by a

group of friends around a table. Currently, there are engines that are

aimed at making card games, however, there is no engine that supports

mobile device integration and makes use of AR supported visual

5

https://paperpile.com/c/QHis7I/yqRqR

experience. A platform that brings together developers and players on this

new era AR gaming is another innovative feature.

AugCards will also contain a cloud service where users can share the

games they created for other people to see and play. AugCards eliminates

the need to buy physical equipment for any card game and gives the user

the opportunity to create and customize their own cards. Thanks to the AR

system, the experience of playing a game will feel very similar to playing

a game with a group of friends around a table, as the cards and effects

will all be animated and displayed to the user. Furthermore, by using

systems similar to flowcharts, we intend to make expressing complex

rules of the game less of a challenge for creators. An example of complex

rules is the intertwined mechanics of Legends of Runeterra [3]. Our tool

will overcome designing these complex rules. We will provide a custom

diagram model which will help users design their game rules. An example

for our diagram model can be seen in Figure 3.

The project will consist of two applications: one desktop application and

one Android application. The game making part, where the user designs

their own assets, cards, events, triggers, set of game rules, and card

properties, will be provided via the desktop application. After the game is

made and ready to be played, each user will use their mobile phones and

use the complementary AugCards mobile app to see the AR visuals and

cards on the table and play the game.

3.2 Functional Requirements
3.2.1 User Functionality

● Users can be either game-developers or players.

● Users can search and look out for shared games on the platform.

● Users can add the games to their library by downloading binaries.

● Users can update the games on their library if creators release a

new patch.

● Users can rate and comment on the games.

● Users can see the statistics of a game about downloads and ratings

or read comments.

● Users should have an account to interact with the platform features.

6

https://paperpile.com/c/QHis7I/4LblQ

3.2.1.1 Player Functionality

● Players can play downloaded games.

● Players can create and connect to private hosts for game sessions

in the local network.

● Players should have the required number of

human-players/mobile-devices connected to the host regarding the

player constraints of the game.

● Players should set up the camera of the mobile device regarding

that game content will be rendered on a planar surface.

● Players can send inputs to the game by touching the screen.

● Players can interact with game instances/cards and perform certain

game events.

● Players can see other players’ interaction and ongoing game events

simultaneously.

3.2.1.2 Game-Developer Functionality

● Developers do not need programming knowledge.

● Developers can create custom card games.

By using UI options, developers should be able to define:

● required/custom game instances like the player, card, card set,

card types, etc.,

● properties of game instances like player’s health, card’s properties

in-depth (type, initial value, constant).

● class relationships between defined game instances.

● game events and their effects on game instances.

● trigger mechanism of game events.

● trigger mechanism of user-input events.

● rules for the events and the properties of game instances.

● heuristic function with accessible game data to enable AI scription.

● custom graphical models/assets for corresponding game instances.

● custom animations for each graphical model.

● bindings of each animation to certain events.

7

● Developers can upload/update the models for their own created

games on the cloud.

● Developers can see all commits and pull an old version of the game.

● Developers can generate source code and compile the game on the

cloud for Debugging or Release.

● Developers can generate binaries directly on the local machine for

Debugging.

● Developers cannot access the generated source code for the game.

● Developers can download compiled binaries from the cloud.

● Developers can sync binaries of the game on desktop applications

into a mobile application.

● Developers can debug the game with the desktop application over a

virtual plane for AR-enabled graphics.

● Developers can debug the game with the mobile application over AR

applied camera frames.

● Developers can deactivate certain game rules for easier debugging.

● Developers can share their custom game to make it accessible for

users in the cloud platform.

● Developers can update/unshare their shared games.

● Developers can remove the repository of an unshared game from

the cloud.

3.2.2 Desktop System Functionality

The system should:

● ask the developer for login credentials.

● create local/cloud repositories for custom game projects.

● delete all repository files if the developer decides to remove the

game.

● restore the last committed version of a custom game from their

cloud/local repository.

● restore a game over design models like game instances, instance

relationships, events-triggers, etc.

● provide a sophisticated and interactive UI for each model design

feature.

8

● provide a table design tool for game instances and their

relationships such as inserting a new table to define new instance

type, inserting a new line into instance tables to define properties,

columns for the detail of properties like type, initial value, etc.

● provide a sequence diagram tool for events-triggers; definition of

triggers contains determining check rules, updates for accessible

properties, and invoking other events.

● provide a model viewer to import and bind graphical

models/animations to game instances and events.

● give warnings about possible development issues like incomplete

event-triggers, infinite-loop danger, etc.

● provide a commit tool to investigate commit details, push/pull

commits, update game models over commits.

● provide a debugging tool to generate binaries on local/cloud, run

the binaries on Android Emulator, or sync the binaries with the

mobile application.

● provide an additional debugging feature to simulate the game with

a desktop version to ensure quick debugging sessions.

● provide a platform interface to edit the community page for the

game, share/unshare the game and interact with other users’

comments.

3.2.3 Mobile System Functionality

The system should:

● asks the user for login credentials.

● provide a platform interface in which users can look out for custom

games shared by developers.

● provide a community page view for each shared game, in which

users can see and interact with stats/ratings of the game and

comments by others.

● provide a download/remove button integrated within the

community page to add the game to the library.

● provide a library to view the games installed on the user devices

from both source Cloud and Desktop-sync.

● remove the games unshared by developers from the library.

9

● provide a game-sessions view to create/join hosts in a local

network.

● provide a game-lobby view to see other players/devices connected

to the host for a game session and launch the game session.

● provide an interactive in-game view to play the game; see the

game content rendered on camera frames and send input to the

game by touching the screen.

● include a common subsystem for all custom games, which performs

the graphical/network operations on games.

3.2.3.1 Common Graphics/Network Subsystem

The system should:

● be a dynamic load library to ensure that downloadable/storable

game binaries do not include it.

● provide a network functionality that any content update on a device

should simultaneously appear on other devices connected to the

same network.

● provide a graphics functionality that detects the planar surface from

camera frames and render a custom content anchored to the

surface on camera frames.

● provide motion detection to render the content with an accurate

camera angle on each frame.

● support advanced custom contents like 3D/2D model/animations

and UI elements.

● support advanced graphics effects like light-estimation, shadows,

anti-aliasing, etc.

3.2.4 Cloud System Functionality

The system should:

● create private repositories for the game projects.

● store the game models along with commit logs in a private

repository.

● generate source code and compile binaries for Debugging/Release.

● not store the debugging/release binaries.

● create public repositories to share games.

10

● store the last shared version (binaries) of the game in a public

repository.

● store contents for the community page of the game in a public

repository.

● provide access for developers to their private repositories.

● provide access for users to public repositories.

● provide file transfer feature to upload/download project commits,

generated binaries, and shared games.

3.3 Nonfunctional Requirements
3.3.1 Usability

● Game creation should not require programming knowledge.

● Tools should be self-explanatory, shouldn’t require extensive

tutorials or guides to be understood.

● The expression of complex card game rules will be simplified using

flowcharts.

● AR-based graphics should have a refresh rate of at least 25 Hz to

not affect game experience adversely.

● Popular image formats such as PNG and JPEG should be supported

as assets.

● Popular graphical model/animation formats like OBJ and COLLADA

should be supported.

3.3.2 Reliability

● Should ensure that changes in game models are not lost on

connection errors.

● Should have a back-up mechanism for ongoing games in a network

failure situation.

● Contradictory game rules shouldn’t be allowed to cause errors.

● Cheats should be detected via checksums.

3.3.3 Maintainability

● Should be modular to reduce the complexity of the codebase.

● Network maintenance costs should be lower than 50TL per month

while profits are low.

● Should use design patterns that will allow changing used libraries.

11

3.3.4 Accessibility

● Should be free to download.

● Should have integration with Google Services.

● Should require less than 1GB of RAM.

3.3.5 Extendability

● The addition of new possible game mechanics should not require

changing existing code.

● The code itself should be properly structured,using design patterns

and clever modularity.Adding new features and mechanics should

require minimal or zero amount of change in the code.

3.3.6 Portability

● Should not cause any compatibility error with changing Android

device sizes and camera resolutions.

● The game creation tool should run on Windows and Linux.

3.4 Pseudo Requirements
● Since the mobile application will be developed for the Android

platform, the implementation language should be Java or Kotlin. For our

project, we choose to use Kotlin because it is a modern language and is

widely being used for Android development. We will use Android Studio for

development.

● We will use Vuforia, which is a library to develop Augmented Reality

applications for mobile devices. Vuforia supports Java, and Kotlin runs on

the JVM which allows it to interact with Java libraries.

● To make integration with the mobile application easier and less

problematic, the desktop application should also be written in Kotlin. For

development, we will use IntelliJ IDEA.

● Since the projects will be hosted on a cloud service, we will need to

interact with the chosen service’s interface to use their cloud service. We

will use Firebase because it is free and developed by Google, which will

help with integration with the Android application.

● We will license our project with the MIT License [4] since it provides

the most flexibility and will be less likely to lead to legal problems we may

come across in the future.

12

https://paperpile.com/c/QHis7I/5xz34

3.5 System Models
This section includes the models that are going to represent our system.

3.5.1 Scenarios

In this section, some usage scenarios of our desktop and mobile

applications will be described in detail.

Scenario 1

13

Use case name Register

Participating actors Player

Flow of events 1. The player enters their credentials (email

and password).

2. The player clicks the register button.

3. The player registers into our system.

Entry condition The player is not logged in.

Exit condition Registration is successful. This is possible only

if:

● The player does not have an account.

● The provided email address is valid.

Quality requirements -

Scenario 2

Scenario 3

14

Use case name Register

Participating actors Developer

Flow of events 1. The developer enters their credentials

(email and password).

2. The developer clicks the register button.

3. The developer registers into our system.

Entry condition The developer is not logged in.

Exit condition Registration is successful. This is possible only

if:

● The developer does not have an account.

● The provided email address is valid.

Quality requirements -

Use case name Login

Participating actors Player

Flow of events 1. The player enters their credentials (email

and password).

2. The player clicks the login button.

3. The player is logged into our system.

Entry condition ● The player is not logged in.

● The player has an account.

Exit condition Login is successful. This is possible only if:

● The player has an account.

● The provided credentials are valid.

Quality requirements The player should stay logged into the system in

Scenario 4

Scenario 5

15

the mobile application.

Use case name Login

Participating actors Developer

Flow of events 1. The developer enters their credentials

(email and password).

2. The developer clicks the login button.

3. The developer is logged into our system.

Entry condition ● The developer is not logged in.

● The developer has an account.

Exit condition Login is successful. This is possible only if:

● The developer has an account.

● The provided credentials are valid.

Quality requirements The developer should stay logged into the

system in the desktop application.

Use case name CreateGame

Participating actors Developer

Flow of events 1. The developer chooses to create a game.

2. The developer names their game.

3. The developer clicks the create button.

Entry condition ● The developer should be in the game

creation screen.

● The developer should not be managing

any games currently.

Exit condition The developer creates the game.

Scenario 6

Scenario 7

16

Quality requirements -

Use case name ManageGameModels

Participating actors Developer

Flow of events 1. The developer adds, edits or deletes game

models.

2. The developer saves their modifications.

Entry condition The developer chooses to manage their game

models.

Exit condition The developer saves their progress and exits the

management screen.

Quality requirements -

Use case name ManageCards

Participating actors Developer

Flow of events 1. The developer adds, edits or deletes

cards.

2. The developer saves their modifications.

Entry condition The developer chooses to manage their cards.

Exit condition The developer saves their progress and exits the

management screen.

Quality requirements -

Scenario 8

Scenario 9

17

Use case name ManageGameRules

Participating actors Developer

Flow of events 1. The developer adds, edits or deletes game

rules.

2. The developer saves their modifications.

Entry condition The developer chooses to manage their game

rules.

Exit condition The developer saves their progress and exits the

management screen.

Quality requirements -

Use case name ManageAnimations

Participating actors Developer

Flow of events 1. The developer adds, edits or deletes

animations.

2. The developer saves their modifications.

Entry condition The developer chooses to manage their

animations.

Exit condition The developer saves their progress and exits the

management screen.

Quality requirements -

Scenario 10

Scenario 11

18

Use case name PublishGame

Participating actors Developer

Flow of events 1. The developer sends their game to our

game cloud.

2. The server places the game into the

games list.

Entry condition The developer chooses to publish their game.

Exit condition The game is published on our cloud.

Quality requirements -

Use case name UpdateGame

Participating actors Developer

Flow of events 1. The developer sends their updated game

to our game cloud.

2. The server replaces the old version of the

game with the new version.

Entry condition The developer chooses to update their game.

Exit condition The game is published on the cloud.

Quality requirements -

Scenario 12

Scenario 13

19

Use case name DeleteGame

Participating actors Developer

Flow of events 1. Developer chooses which game to delete.

2. The cloud performs an operation.

Entry condition ● The developer should be logged in.

● The developer should have at least one

game.

Exit condition The developer confirms their operation and their

game is deleted.

Quality requirements -

Use case name ManageGameLibrary

Participating actors Player

Flow of events 1. The player chooses to manage their game

library.

2. They are directed to the management

screen.

Entry condition The player should be logged in.

Exit condition The player is in the game library management

screen.

Quality requirements -

Scenario 14

Scenario 15

20

Use case name SearchGame

Participating actors Player

Flow of events 1. The player chooses to search the game

cloud.

2. They are directed to the search screen.

3. They search using the name of the game.

Entry condition ● The player should already be in the library

management screen.

● The player should choose the search

option.

Exit condition The player finds the game that they are looking

for, or no matching game for the provided

string.

Quality requirements -

Use case name AddGame

Participating actors Player

Flow of events 1. The player chooses to add a game to their

game library.

2. The game they choose is downloaded and

added to their library.

Entry condition The player should choose a game to add.

Exit condition The game is downloaded and added to the

library of the player.

Quality requirements -

Scenario 16

Scenario 17

21

Use case name UpdateGame

Participating actors Player

Flow of events 1. The player chooses to update a game in

their game library.

2. The updated version of the game is

downloaded from the cloud and the old

version is removed.

Entry condition ● The player should choose a game to

update.

● The chosen game should have an update.

Exit condition The game is updated.

Quality requirements -

Use case name RateGame

Participating actors Player

Flow of events 1. The player chooses to rate a game in their

game library.

2. Their rating is recorded and the total

rating of the game is updated.

Entry condition ● The player chooses a game to rate.

● The chosen game should be downloaded

and played by the player.

Exit condition The game’s rating is updated.

Quality requirements -

Scenario 18

Scenario 19

22

Use case name CommentGame

Participating actors Player

Flow of events 1. The player chooses to comment on a

game in their game library.

2. Their comment is recorded and displayed

on the game information screen.

Entry condition ● The player chooses a game to comment

on.

● The chosen game should be downloaded

and played by the player.

Exit condition The game’s comments are updated.

Quality requirements -

Use case name ManageSession

Participating actors Player

Flow of events 1. The player chooses a game.

2. The player manages their session in the

game.

Entry condition The player should choose a game.

Exit condition They are directed to the session management

screen.

Quality requirements -

Scenario 20

Scenario 21

23

Use case name CreateSession

Participating actors Player

Flow of events 1. The player creates a game session.

Entry condition The player should choose to create a session.

Exit condition The session is created and visible to nearby

players.

Quality requirements -

Use case name JoinSession

Participating actors Player

Flow of events 1. The player chooses a game session to

join.

2. The player joins that session.

Entry condition ● The player should choose to join a

session.

● There should be an available session.

Exit condition The player joins into the session.

Quality requirements -

Scenario 22

Scenario 23

24

Use case name EditSessionSettings

Participating actors Player

Flow of events 1. The player chooses to edit their session’s

settings.

2. They save their settings.

Entry condition ● The player should have created a session.

● They should be in the session.

Exit condition The player saves their settings.

Quality requirements -

Use case name PlayGame

Participating actors Player

Flow of events The player chooses an action to perform in the

game.

Entry condition ● The player should be in a game.

Exit condition The player confirms their action.

Quality requirements -

Scenario 24

Scenario 25

25

Use case name CheckTable

Participating actors Player

Flow of events The player chooses to inspect the table.

Entry condition ● The player should be in a game.

Exit condition The player exits the table view.

Quality requirements -

Use case name PlayCard

Participating actors Player

Flow of events The player chooses a card to play.

Entry condition ● The player should be in a game.

● It should be the player’s turn.

Exit condition The player plays a card.

Quality requirements -

3.5.2 Use Case Model

We created two use case models; one for the desktop system and one for

the mobile system.

3.5.2.1 Desktop System Use Case Model

Figure 1: Desktop Application Use Case Diagram

26

3.5.2.2 Mobile System Use Case Model

Figure 2: Mobile Application Use Case Model

27

3.5.3 Object and Class Model

We will include object-class diagrams to represent the static state of our

systems. As mentioned, we have four systems as Desktop, Mobile, Cloud,

Common Graphics/Network Subsystem. We included class diagrams for

Desktop and Mobile System but not for Cloud and Graphic/Network

System since they are implementation specific.

3.5.3.1 Desktop System Class Model

Desktop System stands for game-design tool, that’s why we should have

classes to store elements of the designed game like game-instances,

events, rules, scripts, graphical models etc.

● Project: A class to store basics and elements of a custom game

project created by the developer.

● Component: An abstract class to generalize all types of elements

inserted into the game models.

● Instance: An abstract class to generalize objects in the game.

● GameInstance: A specific Instance to represent the custom

game objects like card, player, avatar defined by the developer.

● ListInstance: A specific Instance to represent the list objects

used in the game.

● Attribute: A class to represent the properties of defined game

objects.

● DataType: An enumeration to specify the type of attributes’ value.

● InitType: An enumeration to specify the type of attributes’

initialization.

● Event: An abstract class to generalize events in the game.

● GameEvent: A specific Event to represent the custom game

events like attack, nextTurn, playCard defined by the developer.

● InputEvent: A specific Event to represent the possible input

events like cardDrag, cardClick, deckClick etc.

● EventArgs: A class to represent the arguments of custom events.

● EventTrigger: A class to represent the trigger mechanisms for

defined events.

28

● Conditioner: A class to generalize in-script rule types.

● Rule: A specific Conditioner to represent one-condition two

branch scripting.

● Iteration: A specific Conditioner to represent iterative scripting

over one-condition.

● Script: A class to represent custom one-line instruction.

● Effect: A class to represent the modifications applied on scripts.

● EffectType: An enumeration to specify effects’ modification type.

● Scriptable: An interface to generalize the elements over which a

script can be applied.

● Accessible: An interface to generalize the elements which are

obtainable in the sequential flow of scripts.

● Access: A class to represent accessible reference hierarchies

● InitValue: A class to represent basic initialization value.

● Game: A specific GameInstance to represent the state and

actions during a game session.

● Board: A class to represent the hierarchy of the elements with

respect to their state.

● BoardField: A class to represent hierarchical areas in which many

elements can be involved.

● InstanceView: A class to represent the view for defined game

objects.

● ViewManager: A class to store the view objects created in the

game project.

● Asset: An abstract class to generalize the graphical elements.

● GraphicalModel: A specific Asset to represent the models within

graphical data.

● Animation: A specific Asset to represent the pre-designed

transform sequence for graphical models within animation data.

● AssetStorage: A class to store the graphical assets loaded within

the game project.

29

Figure 3: Desktop System Class Model

30

3.5.3.2 Mobile System Class Model

Mobile System stands for a platform-like application where users can look

for games, like or comment on the game, inserting the game to their own

library etc. That’s why we should have model classes to store information

about users, games, game-library, platform and game lobby etc. Also,

there should be view classes because of its being a highly front-end

application.

● AugCards: Entry-point class into the model state of the mobile

system; it stores the most fundamental objects in the system.

● User: A class to represent only type of actor in the system by

storing its unique and private attributes like username, email, etc.

● Platform: A class to represent the common point where users and

developers meet through shared games.

● GameLibrary: A class to represent the customizable game storage

where users can insert new ones and pick favorites.

● Game: A class to represent the state of a shared custom game in

the platform.

● GameLobby: A class to represent created and in-preparation game

sessions in which players can join.

● MainFrame: A class to store the view objects and their hierarchies

among the system.

● View: A class to generalize all sophisticated view objects like

library-view, platform-view, game-view, etc.

● AugCardsView: A specific View to represent the main view of

AugCards application; it can contain inner view.

● HomeView: A specific View to represent the home-screen of the

application.

● AppStartView: A specific View to represent the initial screen

displayed when application launched.

● LoginView: A specific View to represent the screen where users

can enter their credentials to access the system.

● LibraryView: A specific View to represent the illustration of a

game-library customized by the user.

31

● GameMainView: A specific View to represent the alone illustration

of a game along with all details like likes, comments, etc.

● GameLayoutView: A specific View to represent the highlights of a

game for listing purpose in library or platform.

● GameLobbyView: A specific View to represent the room-like view

in which displays the information about the game session in

preparation phase.

● PlatformView: A specific View to represent the store-like display

in which displays the popular or searched games.

There is an interface of Common Graphics/Network Subsystem because

the mobile system is interchangeably processing with this subsystem to

handle game-lobby creation/join through the local network and to run

downloaded game executables with sophisticated graphics pipeline.

32

Figure 4: Mobile System Class Model

33

3.5.4 Dynamic Models

Dynamic modeling of a system shows the interactions between classes

and users through function calls, which demonstrate the scenarios

regarding the processing of the system.

3.5.4.1 Sequence Diagrams

Sequence diagrams display the interactions between the actor interacting

with the program, and display the program functionalities. The following

five diagrams are the sequence diagrams of some of our functionalities.

3.5.4.1.1 Login Sequence Diagram

The Login Sequence Diagram shows the login and register activity of the

user to our mobile system, which utilizes a Database.

Figure 5: Login Sequence Diagram

34

3.5.4.1.2 Create Game Instance Sequence Diagram

The diagram shows how a Developer creates a game instance and assigns

attributes to it. Game instances are going to consist of cards mainly in our

app.

Figure 6: Create Game Instance Sequence Diagram

35

3.5.4.1.3 Create Game Event Sequence Diagram

The diagram displays how the Developer creates a game event by

introducing event triggers. The end result of a game event is in script

form.

Figure 7: Create Game Event Sequence Diagram

36

3.5.4.1.4 Create Instance View Sequence Diagram

The following diagram shows how developers can bind their own graphical

assets for defined game instances.

Figure 8: Create Instance View Sequence Diagram

37

3.5.4.1.5 Play Game Sequence Diagram

The diagram shows how the User joins a lobby to play the game. The

game is accessed through the Game Library. If the game runs without an

error, the User is navigated to the Game View.

Figure 9: Play Game Sequence Diagram

38

3.5.4.1.6 Manage Game Library Sequence Diagram

The diagram shows how the User manages their game library by utilizing

the features of playing the game, liking the game, disliking the game,

commenting on the game, sharing a game, and listing the popular games

through the Platform. The Platform is where games are accessed in

general view, and the game libraries are lists of games, within the

Platform.

39

Figure 10: Manage Game Library Sequence Diagram

3.5.4.2 Activity Diagrams

Activity diagrams describe the system by displaying the flow between

activities. We produced a diagram that shows the activity flow in our

Mobile System.

3.5.4.2.1 Mobile System Activity Diagram

This diagram provides information about how the Mobile System of

AugCards navigates through activities, by using the UI elements provided

to the user. A more graphical display is provided in the Mock-up section of

the report.

40

Figure 11: Mobile System Activity Diagram

3.5.4.2.2 Desktop System Activity Diagram

The following diagram demonstrates basic action flow among the

application use. Here, the functionalities described on the use-case model

furtherly specified regarding with their flow relations. In mock-up section,

there will be illustrations of such activities.

41

Figure 12: Desktop Activity Diagram

3.5.5 User Interface-Navigational Paths and Screen Mockups

Our project consists of a desktop game creation app and a mobile game

launcher app. Desktop app has object creation, event creation, game

layout and settings windows.

42

3.5.5.1 Desktop Application Mockups

3.5.5.2 Object Creation Mockups

Figure 13: General Game Options

Game settings such as player count will be set here. Also, attributes

(variables) of the game will be created here.

Figure 14: Player Settings

43

Attributes for each player are defined here. If all the players have the

same properties (there aren’t different characters like mage, etc.), types

and initial values of players’ attributes will be set here.

Figure 15: Alternative Player Settings

If a game has different characters (enabled from a checkbom), player

types will be created from the left and character attributes will be set for

all the characters. Allowing choosing the same character will also be an

option.

44

Figure 16: Character Creation

Values of attributes for each character can be set from this menu.

Figure 17: Card Settings

45

Cards of the game are defined in the cards section. In AugCards, card

types and subtypes can be created. Card types and subtypes define card

attributes and subtypes inherit parent card types’ attributes.

Figure 18: Card Types

Unit cards (Unit Cards is an example, any other type name can be

created) inherit card attributes.

46

Figure 19: Card Types-II

Regular Unit Cards (also an example) inherit Unit cards.

Figure 20: Card Creation

Destroyer is a regular unit card and it’s attributes should be set. These

attributes are defined in parent types. It’s visual model is also set here.

47

Figure 21: Deck Creation

The games will have decks consisting of cards. New decks can be created

here. In-game deck creation is not considered in the first phase. Decks

can be player and game attributes.

Figure 22: Deck Setup

When clicked on a deck, card navigation will open on the right side of the

screen and cards will be moved to decks.

48

3.5.5.3 Event Creation Mockup

Figure 23: Events

Event design illustration includes two example events defined for Card

instance as Attack and Dead events. Attack event furtherly described with

event args and some script lines. There are four types of script that can

be inserted as Attribute Modification, Event Raising, Case Checking and

Iteration Applying. Each script involves three basic elements as Attribute,

Effect, Modification.

49

3.5.5.4 Layout Settings Mockups

Figure 24: Layout Settings

In the layout window, the visual parameters are set.

50

Figure 25: Table View

The games will be played with AR on a table and in this window, areas on

the table are created. Areas can have a deck, display setting (show only

top, bottom, side-by-side etc.). The event to be fired when clicked on an

area can be set. Also click, hover animations can be set.

51

Figure 26: Phone View

Phone screen will show the specified buttons and areas on top of the

Camera input. Areas shown on the phone screen can be specified here.

52

3.5.5.5 Mobile Application Mockups

Figure 27: Mobile Home Screen

53

Figure 28: Browse Games

Games exported from the desktop app will be shown here. They can be

inspected and downloaded.

54

Figure 29: Game Library

Games players downloaded can be seen here.

55

Figure 30: Game Settings

When the player chooses a game, they can either host or join the game.

56

Figure 31: Session Creation

A player can create a game session by setting up parameters.

57

Figure 32: Wait Screen

The host can see the joined players and can start the game.

58

Figure 33: Wait Screen-II

Other players can wait for the game to start.

59

4 Other Analysis Elements

4.1 Consideration of Various Factors
There are some factors that limit our project that require extra attention.

4.1.1 Public Safety

Safety of the public may be threatened. Since the app offers a variety of

options to users, users may use this variety to create

games,images,characters that may include offensive figures to others. In

order to prevent that, AugCards should have a way of filtering the

media,game style, or other components that may be a potential threat to

the users.

4.2 Risks and Alternatives
AugCards has several risks regarding implementations which will be faced

during the development phase. Those risks will be provided in this section

of the report, with their B plans.

1. Unsatisfactory Server Performance:

AugCards will require us to use Cloud service, which requires

servers. It is important to find one that satisfies users in terms of

gameplay. AugCards will be GPU Heavy and server communication

time is essential for establishing the game within multiple players.

If the server performance is unsatisfactory, a better server will be

equipped.

2. Infeasible Server Costs:

We have economic constraints and it poses a risk to be having to

provide the server costs. To handle this risk, we will optimize the

models and make optimizing changes in our features of AugCards.

3. Low Performance :

AugCards will use AR supported visuals. Since using AR will highly

consume memory and load highly on the GPU, a decrease in

performance is a risk. We will do research to utilize more optimum

working libraries in terms of graphics.

60

4. Discrepancy Among Group Members:

It is a risk that discrepancy occurs within the developers team. In

this case, we will obey to be democratic, and trust in the vision of

the majority.

Below is a summary table of mentioned risks:

Table 1: Risks and B Plans

4.3 Project Plan
Project planning is crucial to meet the critical deadlines and perform

productive progress. There are many project planning methods but the

most reasonable one to use in our project is decomposition of the project

into the smaller tasks. At this point, it appears that there are four main

tasks as the development of Desktop, Mobile, Cloud and Graphics/Network

Engine. We should divide these main tasks into further subtasks to ease

the distribution of workload among the members and perform the required

progress. Firstly, we need to identify project goals:

slm

61

 Likelihood Effect on the

Project

B Plan

Unsatisfactory

Server

Performance

Medium Decreases the

user experience

Better server

will be equipped

Infeasible

Server Costs

Medium Project needs to

be optimized

Optimization

Low

Performance

High Decreases the

user experience.

Project needs to

be optimized.

Optimization

Discrepancy

Among Group

Members

Medium Decreases

working

efficiency.

Democratic

decision taking

● Deliver Project Specifications Report

● Build a website for the project

● Deliver Analysis Report

● Develop the initial version of Desktop System

● Develop the initial version of Common Graphics/Network

Subsystem

○ Implement the graphics pipeline

○ Implement the network structure (P2P)

● Develop the initial version of Mobile System

● Develop the initial version of Cloud System

● Deliver High-Level Report

● Generate a demo which shows currently developed systems

● Revise and Develop systems furtherly

● Deliver Low-Level Report

● Revise the user interface elements of the systems

● Optimize the systems to provide much usable elements

● Deliver Final Report

● Prepare a project demo and presentation

62

Deliverables Reviewer Members Deadline

Spec. Report All All Oct. 12, 2020

Website All Yiğit, Yusuf Oct. 9, 2020

Analysis Report All All Nov. 21, 2020

High Level

Report

All All Dec. 21, 2020

Imp. Desktop

Sys.

Burak, Çerağ Bora, Yusuf Jan. 10. 2021

Imp. Graphics

Pipeline

Burak Çerağ, Yusuf Jan. 10. 2021

Table 2: Tasks-Work Dist. and Deadlines

The mentioned tasks are tentative to be branched into further subtasks

and their deadlines are subject to change.

4.4 Ensuring Proper Teamwork
We were confident in each other before the senior project because most of

us did projects together before and we discussed and agreed on that

everyone will contribute equally to the project. We are also utilising

several methods to ensure that the teamwork is done and distributed

properly.

4.4.1 Weekly Meetings

We are doing weekly meetings every monday before CS491 seminars. In

those meetings, each of us discuss and present what we have done and

we decide what each of us will do next week. We make important

decisions about the project in these meetings. These meetings help

63

Imp. Network

Structure

Yusuf Yiğit, Burak Jan. 10. 2021

Imp. Mobile Sys. Yiğit, Bora Çerağ Jan. 10. 2021

Imp. Cloud Sys. Yusuf Yiğit Jan. 10. 2021

First Demo All All Jan. 15, 2021

Revise and

Further Dev.

All All ?

Low Level Report All All Feb. 8, 2021

Revise User Exp. All All ?

Optimize Sys. All All ?

Final Report All All Apr. 30, 2021

Final Demo All All May. 15, 2021

ensure that everyone is doing their job properly and the project is being

developed properly. Meetings take place on Discord or Zoom.

4.4.2 Using Project Management Tools

We are using Trello to keep track of each group member’s tasks. We have

chosen to use Trello because it is free and we can divide the tasks to

ToDo, In Progress, In Review, Done and possibly other categories. We

assign group members and deadlines to tasks.

Figure 34: Trello View

4.4.3 Code Review

We want to ensure a high quality codebase in our project and we plan to

enforce code reviews by another group member for each pull request on

GitHub. Code reviews will also ensure that everyone has written high

quality code.

4.4.4 Pair Tasks

We are giving some of the big and important tasks to 2 group members.

We are inspired by pair programming. It’s advantageous because 2 people

have higher chances than one person in catching errors and maintaining

high quality because one person may overlook errors. Tasks that are done

in pairs are simultaneously reviewed.

64

4.5 Ethics and Professional Responsibilities
In this section of the Analysis Report, the ethical and professional

responsibilities that arise with the development of this project are going to

be discussed.

4.5.1 Ethics

First of all, the content of the games should be monitored so that they do

not contain offensive content, hate symbols or speech. This is important

since we intend to create a platform for people that want to have fun

playing and designing games.

Another issue is that we need to keep the creative rights of game

developers in mind, since these rights allow developers to protect their

work from being stolen or copied. The games should also be monitored to

make sure that this occurs as little as possible.

Privacy of the users’ data should also be prioritised, since we need to

create profiles for users and keep their emails. The emails will only be

kept for profile purposes, and not be shared with third parties.

4.5.2 Professional Responsibilities

We will communicate through online meetings and messaging, since there

is a pandemic going on. We conduct weekly meetings through Discord, an

online communication application. For important decisions and changes,

we use WhatsApp to communicate.

We will keep our GitHub repository private for the time being since it

would benefit us in terms of security and stopping people from stealing or

copying our idea.

4.6 Planning for New Knowledge and Learning Strategies
Our current knowledge is not enough to develop this project.There are

various new technologies and skills we need to develop in order to

complete this project successfully.

● Augmented Reality

● Cloud Computing

● Networking

● Android Development

65

Learning AR is necessary since the Android hand of the application will be

supported by AR.Cloud computing is necessary in order for users to store

their games to Android. Note that users will store their desktop games in

the cloud, where users will be able to download it to their mobiles.

We will use similar techniques that we used to communicate and learn in

the CS319 course. We will do weekly meetings, report every meeting in

written format. We will learn new technologies by constantly

practising,learning step by step.

5 Glossary
Game Instance A specific instance in AugCards to

represent the custom game objects like card, player, avatar defined by

the developer.

Game Event A specific event in AugCards to represent

the custom game events like attack, play card or navigate to the next

turn, defined by the developer.

Event Trigger An event trigger represents the

trigger mechanisms for defined events.

Game Rules A set of conditioners for a game specified

by Developers in AugCards to represent the rules of the created game.

Session A session refers to a game session

in which the game is played by the players.

Asset An abstract class to generalize the

graphical elements.

Animation A specific Asset to represent the

pre-designed transform sequence for graphical models within animation

data.

66

Developer A developer of AugCards represents the

type of actor in the system which creates card games.

Player A player of AugCards represents the type

of actor in the system which attends games.

Platform A platform in AugCards represents the

common point where users and developers meet through shared games.

Game Library A game library in AugCards

represents the customizable game storage where users can insert new

ones and pick favorites.

Game Lobby A game lobby in AugCards represents

created and in-preparation game sessions in which players can join.

GPU Graphics Processing Unit. GPU is designed

for handling graphics operations, including 2D and 3D calculations to

render 3D graphics [5].

Git A version control system used for project

teams for reviewing and tracing code changes.

GitHub An online platform which hosts

software development versions for software development teams by using

Git.

Trello Trello is a collaboration tool that

organizes your projects into boards [6].

Augmented Reality Augmented Reality is a technology for

producing an enhanced environment [7].

67

https://paperpile.com/c/QHis7I/5Dvm
https://paperpile.com/c/QHis7I/5oAj
https://paperpile.com/c/QHis7I/kuFw

Android System The Android operating system is a mobile

operating system developed for mobile platforms.

Discord an American VoIP, instant messaging and

digital distribution platform designed for creating communities [8].

WhatsApp WhatsApp is a messenger cross-platform

instant messaging application.

Dulst Dulst is an online card game playing

software [9].

UML Unified Modeling Language, is a standardized

modeling language consisting of an integrated set of diagrams [10].

Vuforia Vuforia is an engine that supports

the use of AR and computer vision functionalities [11].

68

https://paperpile.com/c/QHis7I/P0WN
https://paperpile.com/c/QHis7I/kmnA
https://paperpile.com/c/QHis7I/39S2
https://paperpile.com/c/QHis7I/6Fyd

6 References

[1] “Topic: Mobile gaming.” [Online]. Available:

https://www.statista.com/topics/1906/mobile-gaming/. [Accessed:

09-Oct-2020]

[2] “Dulst.” [Online]. Available: https://dulst.com/. [Accessed:

08-Oct-2020]

[3] “Legends of Runeterra.” [Online]. Available:

https://playruneterra.com/tr-tr/. [Accessed: 09-Oct-2020]

[4] “MIT License.” [Online]. Available: https://mit-license.org/.

[Accessed: 08-Oct-2020]

[5] “GPU (Graphics Processing Unit) Definition.” [Online]. Available:

https://techterms.com/definition/gpu. [Accessed: 21-Nov-2020]

[6] Trello, “What is Trello?” [Online]. Available: https://help.trello.com.

[Accessed: 21-Nov-2020]

[7] “augmented reality.” [Online]. Available: https://www.dictionary.com.

[Accessed: 21-Nov-2020]

[8] Contributors to Wikimedia projects, “Discord (software),”

30-Jan-2016. [Online]. Available:

https://en.wikipedia.org/wiki/Discord_(software). [Accessed:

21-Nov-2020]

[9] “Dulst.” [Online]. Available: https://dulst.com/. [Accessed:

21-Nov-2020]

[10] “What is Unified Modeling Language (UML)?” [Online]. Available:

https://www.visual-paradigm.com/guide/uml-unified-modeling-langua

ge/what-is-uml/. [Accessed: 21-Nov-2020]

[11] “Vuforia Developer Portal.” [Online]. Available:

https://developer.vuforia.com/. [Accessed: 21-Nov-2020]

69

http://paperpile.com/b/QHis7I/TXCtK
https://www.statista.com/topics/1906/mobile-gaming/
http://paperpile.com/b/QHis7I/TXCtK
http://paperpile.com/b/QHis7I/TXCtK
http://paperpile.com/b/QHis7I/yqRqR
https://dulst.com/
http://paperpile.com/b/QHis7I/yqRqR
http://paperpile.com/b/QHis7I/yqRqR
http://paperpile.com/b/QHis7I/4LblQ
https://playruneterra.com/tr-tr/
http://paperpile.com/b/QHis7I/4LblQ
http://paperpile.com/b/QHis7I/5xz34
https://mit-license.org/
http://paperpile.com/b/QHis7I/5xz34
http://paperpile.com/b/QHis7I/5xz34
http://paperpile.com/b/QHis7I/5Dvm
https://techterms.com/definition/gpu
http://paperpile.com/b/QHis7I/5Dvm
http://paperpile.com/b/QHis7I/5oAj
https://help.trello.com/
http://paperpile.com/b/QHis7I/5oAj
http://paperpile.com/b/QHis7I/5oAj
http://paperpile.com/b/QHis7I/kuFw
https://www.dictionary.com/
http://paperpile.com/b/QHis7I/kuFw
http://paperpile.com/b/QHis7I/kuFw
http://paperpile.com/b/QHis7I/P0WN
http://paperpile.com/b/QHis7I/P0WN
https://en.wikipedia.org/wiki/Discord_(software)
http://paperpile.com/b/QHis7I/P0WN
http://paperpile.com/b/QHis7I/P0WN
http://paperpile.com/b/QHis7I/kmnA
https://dulst.com/
http://paperpile.com/b/QHis7I/kmnA
http://paperpile.com/b/QHis7I/kmnA
http://paperpile.com/b/QHis7I/39S2
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
http://paperpile.com/b/QHis7I/39S2
http://paperpile.com/b/QHis7I/6Fyd
https://developer.vuforia.com/
http://paperpile.com/b/QHis7I/6Fyd

